Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler

With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-02, Vol.12 (2), p.415
Hauptverfasser: Dong, Lijiang, Huang, Shangwen, Qian, Baiyun, Wang, Kaike, Gao, Ning, Lin, Xiang, Shi, Zeqi, Lu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 415
container_title Processes
container_volume 12
creator Dong, Lijiang
Huang, Shangwen
Qian, Baiyun
Wang, Kaike
Gao, Ning
Lin, Xiang
Shi, Zeqi
Lu, Hao
description With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value, the pulverized coal combustion with hydrogen at 1%, 5%, and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period, which helps the ignition of pulverized coal. However, as the proportion of hydrogen blending increases, the production of large amounts of H2O gives an overall lower temperature. On the other hand, the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.
doi_str_mv 10.3390/pr12020415
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2931056856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784104456</galeid><sourcerecordid>A784104456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-141fe92af28bd7f8864fc614fdf265ce1dadd8d797a90aae3e8094725ed18acb3</originalsourceid><addsrcrecordid>eNpNkM1OwzAMxyMEEtPYhSeoxA2pkKRpkxxHBQxpwIEhxCnK8jFlapORtofdeAfekCch25DAPtiSf_bfNgDnCF4VBYfXm4gwxJCg8giMMMY05xTR43_5KZh03Rom46hgZTUC709Da6JTssleXDs0snfBZ8Fms62OYWX89-dXHVL1pjFeO7_K6tAuh26POZ_JrKpg9viWLaRPdO92aHCNiWfgxMqmM5PfOAavd7eLepbPn-8f6uk8V5gXfY4IsoZjaTFbamoZq4hVFSJWW1yVyiAttWaacio5lNIUhkFOKC6NRkyqZTEGF4e5mxg-BtP1Yh2G6JOkSAIIllU6NFFXB2olGyOct6GPUiXXpnUqeGPTzmJKGUGQkH3D5aFBxdB10Vixia6VcSsQFLt3i793Fz-c3HIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931056856</pqid></control><display><type>article</type><title>Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dong, Lijiang ; Huang, Shangwen ; Qian, Baiyun ; Wang, Kaike ; Gao, Ning ; Lin, Xiang ; Shi, Zeqi ; Lu, Hao</creator><creatorcontrib>Dong, Lijiang ; Huang, Shangwen ; Qian, Baiyun ; Wang, Kaike ; Gao, Ning ; Lin, Xiang ; Shi, Zeqi ; Lu, Hao</creatorcontrib><description>With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value, the pulverized coal combustion with hydrogen at 1%, 5%, and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period, which helps the ignition of pulverized coal. However, as the proportion of hydrogen blending increases, the production of large amounts of H2O gives an overall lower temperature. On the other hand, the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12020415</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alternative energy sources ; Blending ; Calorific value ; Carbon ; Carbon dioxide ; Carbon dioxide concentration ; Coal ; Coal-fired power plants ; Combustion ; Electricity ; Emissions ; Energy industry ; Equipment and supplies ; Flow velocity ; Gas turbines ; Heat ; Heating ; Hydrogen ; Hydrogen as fuel ; Industrial plant emissions ; Mathematical models ; Natural gas ; Numerical analysis ; Pollutants ; Pulverized coal ; Reynolds number ; Simulation ; Simulation methods ; Temperature distribution ; Turbines</subject><ispartof>Processes, 2024-02, Vol.12 (2), p.415</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-141fe92af28bd7f8864fc614fdf265ce1dadd8d797a90aae3e8094725ed18acb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dong, Lijiang</creatorcontrib><creatorcontrib>Huang, Shangwen</creatorcontrib><creatorcontrib>Qian, Baiyun</creatorcontrib><creatorcontrib>Wang, Kaike</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Lin, Xiang</creatorcontrib><creatorcontrib>Shi, Zeqi</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><title>Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler</title><title>Processes</title><description>With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value, the pulverized coal combustion with hydrogen at 1%, 5%, and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period, which helps the ignition of pulverized coal. However, as the proportion of hydrogen blending increases, the production of large amounts of H2O gives an overall lower temperature. On the other hand, the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Blending</subject><subject>Calorific value</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Coal</subject><subject>Coal-fired power plants</subject><subject>Combustion</subject><subject>Electricity</subject><subject>Emissions</subject><subject>Energy industry</subject><subject>Equipment and supplies</subject><subject>Flow velocity</subject><subject>Gas turbines</subject><subject>Heat</subject><subject>Heating</subject><subject>Hydrogen</subject><subject>Hydrogen as fuel</subject><subject>Industrial plant emissions</subject><subject>Mathematical models</subject><subject>Natural gas</subject><subject>Numerical analysis</subject><subject>Pollutants</subject><subject>Pulverized coal</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Temperature distribution</subject><subject>Turbines</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1OwzAMxyMEEtPYhSeoxA2pkKRpkxxHBQxpwIEhxCnK8jFlapORtofdeAfekCch25DAPtiSf_bfNgDnCF4VBYfXm4gwxJCg8giMMMY05xTR43_5KZh03Rom46hgZTUC709Da6JTssleXDs0snfBZ8Fms62OYWX89-dXHVL1pjFeO7_K6tAuh26POZ_JrKpg9viWLaRPdO92aHCNiWfgxMqmM5PfOAavd7eLepbPn-8f6uk8V5gXfY4IsoZjaTFbamoZq4hVFSJWW1yVyiAttWaacio5lNIUhkFOKC6NRkyqZTEGF4e5mxg-BtP1Yh2G6JOkSAIIllU6NFFXB2olGyOct6GPUiXXpnUqeGPTzmJKGUGQkH3D5aFBxdB10Vixia6VcSsQFLt3i793Fz-c3HIl</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Dong, Lijiang</creator><creator>Huang, Shangwen</creator><creator>Qian, Baiyun</creator><creator>Wang, Kaike</creator><creator>Gao, Ning</creator><creator>Lin, Xiang</creator><creator>Shi, Zeqi</creator><creator>Lu, Hao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20240201</creationdate><title>Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler</title><author>Dong, Lijiang ; Huang, Shangwen ; Qian, Baiyun ; Wang, Kaike ; Gao, Ning ; Lin, Xiang ; Shi, Zeqi ; Lu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-141fe92af28bd7f8864fc614fdf265ce1dadd8d797a90aae3e8094725ed18acb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Blending</topic><topic>Calorific value</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Coal</topic><topic>Coal-fired power plants</topic><topic>Combustion</topic><topic>Electricity</topic><topic>Emissions</topic><topic>Energy industry</topic><topic>Equipment and supplies</topic><topic>Flow velocity</topic><topic>Gas turbines</topic><topic>Heat</topic><topic>Heating</topic><topic>Hydrogen</topic><topic>Hydrogen as fuel</topic><topic>Industrial plant emissions</topic><topic>Mathematical models</topic><topic>Natural gas</topic><topic>Numerical analysis</topic><topic>Pollutants</topic><topic>Pulverized coal</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Temperature distribution</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Lijiang</creatorcontrib><creatorcontrib>Huang, Shangwen</creatorcontrib><creatorcontrib>Qian, Baiyun</creatorcontrib><creatorcontrib>Wang, Kaike</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Lin, Xiang</creatorcontrib><creatorcontrib>Shi, Zeqi</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Lijiang</au><au>Huang, Shangwen</au><au>Qian, Baiyun</au><au>Wang, Kaike</au><au>Gao, Ning</au><au>Lin, Xiang</au><au>Shi, Zeqi</au><au>Lu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler</atitle><jtitle>Processes</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>415</spage><pages>415-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value, the pulverized coal combustion with hydrogen at 1%, 5%, and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period, which helps the ignition of pulverized coal. However, as the proportion of hydrogen blending increases, the production of large amounts of H2O gives an overall lower temperature. On the other hand, the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12020415</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2024-02, Vol.12 (2), p.415
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2931056856
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Alternative energy sources
Blending
Calorific value
Carbon
Carbon dioxide
Carbon dioxide concentration
Coal
Coal-fired power plants
Combustion
Electricity
Emissions
Energy industry
Equipment and supplies
Flow velocity
Gas turbines
Heat
Heating
Hydrogen
Hydrogen as fuel
Industrial plant emissions
Mathematical models
Natural gas
Numerical analysis
Pollutants
Pulverized coal
Reynolds number
Simulation
Simulation methods
Temperature distribution
Turbines
title Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Hydrogen%E2%80%93Coal%20Blending%20Combustion%20in%20a%20660%20MW%20Tangential%20Boiler&rft.jtitle=Processes&rft.au=Dong,%20Lijiang&rft.date=2024-02-01&rft.volume=12&rft.issue=2&rft.spage=415&rft.pages=415-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12020415&rft_dat=%3Cgale_proqu%3EA784104456%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931056856&rft_id=info:pmid/&rft_galeid=A784104456&rfr_iscdi=true