Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler
With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon em...
Gespeichert in:
Veröffentlicht in: | Processes 2024-02, Vol.12 (2), p.415 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 415 |
container_title | Processes |
container_volume | 12 |
creator | Dong, Lijiang Huang, Shangwen Qian, Baiyun Wang, Kaike Gao, Ning Lin, Xiang Shi, Zeqi Lu, Hao |
description | With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value, the pulverized coal combustion with hydrogen at 1%, 5%, and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period, which helps the ignition of pulverized coal. However, as the proportion of hydrogen blending increases, the production of large amounts of H2O gives an overall lower temperature. On the other hand, the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending. |
doi_str_mv | 10.3390/pr12020415 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2931056856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784104456</galeid><sourcerecordid>A784104456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-141fe92af28bd7f8864fc614fdf265ce1dadd8d797a90aae3e8094725ed18acb3</originalsourceid><addsrcrecordid>eNpNkM1OwzAMxyMEEtPYhSeoxA2pkKRpkxxHBQxpwIEhxCnK8jFlapORtofdeAfekCch25DAPtiSf_bfNgDnCF4VBYfXm4gwxJCg8giMMMY05xTR43_5KZh03Rom46hgZTUC709Da6JTssleXDs0snfBZ8Fms62OYWX89-dXHVL1pjFeO7_K6tAuh26POZ_JrKpg9viWLaRPdO92aHCNiWfgxMqmM5PfOAavd7eLepbPn-8f6uk8V5gXfY4IsoZjaTFbamoZq4hVFSJWW1yVyiAttWaacio5lNIUhkFOKC6NRkyqZTEGF4e5mxg-BtP1Yh2G6JOkSAIIllU6NFFXB2olGyOct6GPUiXXpnUqeGPTzmJKGUGQkH3D5aFBxdB10Vixia6VcSsQFLt3i793Fz-c3HIl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931056856</pqid></control><display><type>article</type><title>Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Dong, Lijiang ; Huang, Shangwen ; Qian, Baiyun ; Wang, Kaike ; Gao, Ning ; Lin, Xiang ; Shi, Zeqi ; Lu, Hao</creator><creatorcontrib>Dong, Lijiang ; Huang, Shangwen ; Qian, Baiyun ; Wang, Kaike ; Gao, Ning ; Lin, Xiang ; Shi, Zeqi ; Lu, Hao</creatorcontrib><description>With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value, the pulverized coal combustion with hydrogen at 1%, 5%, and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period, which helps the ignition of pulverized coal. However, as the proportion of hydrogen blending increases, the production of large amounts of H2O gives an overall lower temperature. On the other hand, the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr12020415</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alternative energy sources ; Blending ; Calorific value ; Carbon ; Carbon dioxide ; Carbon dioxide concentration ; Coal ; Coal-fired power plants ; Combustion ; Electricity ; Emissions ; Energy industry ; Equipment and supplies ; Flow velocity ; Gas turbines ; Heat ; Heating ; Hydrogen ; Hydrogen as fuel ; Industrial plant emissions ; Mathematical models ; Natural gas ; Numerical analysis ; Pollutants ; Pulverized coal ; Reynolds number ; Simulation ; Simulation methods ; Temperature distribution ; Turbines</subject><ispartof>Processes, 2024-02, Vol.12 (2), p.415</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-141fe92af28bd7f8864fc614fdf265ce1dadd8d797a90aae3e8094725ed18acb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Dong, Lijiang</creatorcontrib><creatorcontrib>Huang, Shangwen</creatorcontrib><creatorcontrib>Qian, Baiyun</creatorcontrib><creatorcontrib>Wang, Kaike</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Lin, Xiang</creatorcontrib><creatorcontrib>Shi, Zeqi</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><title>Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler</title><title>Processes</title><description>With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value, the pulverized coal combustion with hydrogen at 1%, 5%, and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period, which helps the ignition of pulverized coal. However, as the proportion of hydrogen blending increases, the production of large amounts of H2O gives an overall lower temperature. On the other hand, the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Blending</subject><subject>Calorific value</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide concentration</subject><subject>Coal</subject><subject>Coal-fired power plants</subject><subject>Combustion</subject><subject>Electricity</subject><subject>Emissions</subject><subject>Energy industry</subject><subject>Equipment and supplies</subject><subject>Flow velocity</subject><subject>Gas turbines</subject><subject>Heat</subject><subject>Heating</subject><subject>Hydrogen</subject><subject>Hydrogen as fuel</subject><subject>Industrial plant emissions</subject><subject>Mathematical models</subject><subject>Natural gas</subject><subject>Numerical analysis</subject><subject>Pollutants</subject><subject>Pulverized coal</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Temperature distribution</subject><subject>Turbines</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkM1OwzAMxyMEEtPYhSeoxA2pkKRpkxxHBQxpwIEhxCnK8jFlapORtofdeAfekCch25DAPtiSf_bfNgDnCF4VBYfXm4gwxJCg8giMMMY05xTR43_5KZh03Rom46hgZTUC709Da6JTssleXDs0snfBZ8Fms62OYWX89-dXHVL1pjFeO7_K6tAuh26POZ_JrKpg9viWLaRPdO92aHCNiWfgxMqmM5PfOAavd7eLepbPn-8f6uk8V5gXfY4IsoZjaTFbamoZq4hVFSJWW1yVyiAttWaacio5lNIUhkFOKC6NRkyqZTEGF4e5mxg-BtP1Yh2G6JOkSAIIllU6NFFXB2olGyOct6GPUiXXpnUqeGPTzmJKGUGQkH3D5aFBxdB10Vixia6VcSsQFLt3i793Fz-c3HIl</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Dong, Lijiang</creator><creator>Huang, Shangwen</creator><creator>Qian, Baiyun</creator><creator>Wang, Kaike</creator><creator>Gao, Ning</creator><creator>Lin, Xiang</creator><creator>Shi, Zeqi</creator><creator>Lu, Hao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20240201</creationdate><title>Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler</title><author>Dong, Lijiang ; Huang, Shangwen ; Qian, Baiyun ; Wang, Kaike ; Gao, Ning ; Lin, Xiang ; Shi, Zeqi ; Lu, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-141fe92af28bd7f8864fc614fdf265ce1dadd8d797a90aae3e8094725ed18acb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Blending</topic><topic>Calorific value</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide concentration</topic><topic>Coal</topic><topic>Coal-fired power plants</topic><topic>Combustion</topic><topic>Electricity</topic><topic>Emissions</topic><topic>Energy industry</topic><topic>Equipment and supplies</topic><topic>Flow velocity</topic><topic>Gas turbines</topic><topic>Heat</topic><topic>Heating</topic><topic>Hydrogen</topic><topic>Hydrogen as fuel</topic><topic>Industrial plant emissions</topic><topic>Mathematical models</topic><topic>Natural gas</topic><topic>Numerical analysis</topic><topic>Pollutants</topic><topic>Pulverized coal</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Temperature distribution</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Lijiang</creatorcontrib><creatorcontrib>Huang, Shangwen</creatorcontrib><creatorcontrib>Qian, Baiyun</creatorcontrib><creatorcontrib>Wang, Kaike</creatorcontrib><creatorcontrib>Gao, Ning</creatorcontrib><creatorcontrib>Lin, Xiang</creatorcontrib><creatorcontrib>Shi, Zeqi</creatorcontrib><creatorcontrib>Lu, Hao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Lijiang</au><au>Huang, Shangwen</au><au>Qian, Baiyun</au><au>Wang, Kaike</au><au>Gao, Ning</au><au>Lin, Xiang</au><au>Shi, Zeqi</au><au>Lu, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler</atitle><jtitle>Processes</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>415</spage><pages>415-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value, the pulverized coal combustion with hydrogen at 1%, 5%, and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period, which helps the ignition of pulverized coal. However, as the proportion of hydrogen blending increases, the production of large amounts of H2O gives an overall lower temperature. On the other hand, the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr12020415</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2024-02, Vol.12 (2), p.415 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2931056856 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Alternative energy sources Blending Calorific value Carbon Carbon dioxide Carbon dioxide concentration Coal Coal-fired power plants Combustion Electricity Emissions Energy industry Equipment and supplies Flow velocity Gas turbines Heat Heating Hydrogen Hydrogen as fuel Industrial plant emissions Mathematical models Natural gas Numerical analysis Pollutants Pulverized coal Reynolds number Simulation Simulation methods Temperature distribution Turbines |
title | Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T05%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Hydrogen%E2%80%93Coal%20Blending%20Combustion%20in%20a%20660%20MW%20Tangential%20Boiler&rft.jtitle=Processes&rft.au=Dong,%20Lijiang&rft.date=2024-02-01&rft.volume=12&rft.issue=2&rft.spage=415&rft.pages=415-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr12020415&rft_dat=%3Cgale_proqu%3EA784104456%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931056856&rft_id=info:pmid/&rft_galeid=A784104456&rfr_iscdi=true |