Numerical Simulation of Hydrogen–Coal Blending Combustion in a 660 MW Tangential Boiler

With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-02, Vol.12 (2), p.415
Hauptverfasser: Dong, Lijiang, Huang, Shangwen, Qian, Baiyun, Wang, Kaike, Gao, Ning, Lin, Xiang, Shi, Zeqi, Lu, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the adjustment of energy structure, the utilization of hydrogen energy has been widely attended. China’s carbon neutrality targets make it urgent to change traditional coal-fired power generation. The paper investigates the combustion of pulverized coal blended with hydrogen to reduce carbon emissions. In terms of calorific value, the pulverized coal combustion with hydrogen at 1%, 5%, and 10% blending ratios is investigated. The results show that there is a significant reduction in CO2 concentration after hydrogen blending. The CO2 concentration (mole fraction) decreased from 15.6% to 13.6% for the 10% hydrogen blending condition compared to the non-hydrogen blending condition. The rapid combustion of hydrogen produces large amounts of heat in a short period, which helps the ignition of pulverized coal. However, as the proportion of hydrogen blending increases, the production of large amounts of H2O gives an overall lower temperature. On the other hand, the temperature distribution is more uniform. The concentrations of O2 and CO in the upper part of the furnace increased. The current air distribution pattern cannot satisfy the adequate combustion of the fuel after hydrogen blending.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr12020415