BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives

We present the Benchmark of Information Retrieval (IR) tasks with Complex Objectives (BIRCO). BIRCO evaluates the ability of IR systems to retrieve documents given multi-faceted user objectives. The benchmark's complexity and compact size make it suitable for evaluating large language model (LL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-04
Hauptverfasser: Wang, Xiaoyue, Wang, Jianyou, Cao, Weili, Wang, Kaicheng, Paturi, Ramamohan, Bergen, Leon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wang, Xiaoyue
Wang, Jianyou
Cao, Weili
Wang, Kaicheng
Paturi, Ramamohan
Bergen, Leon
description We present the Benchmark of Information Retrieval (IR) tasks with Complex Objectives (BIRCO). BIRCO evaluates the ability of IR systems to retrieve documents given multi-faceted user objectives. The benchmark's complexity and compact size make it suitable for evaluating large language model (LLM)-based information retrieval systems. We present a modular framework for investigating factors that may influence LLM performance on retrieval tasks, and identify a simple baseline model which matches or outperforms existing approaches and more complex alternatives. No approach achieves satisfactory performance on all benchmark tasks, suggesting that stronger models and new retrieval protocols are necessary to address complex user needs.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2931010124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931010124</sourcerecordid><originalsourceid>FETCH-proquest_journals_29310101243</originalsourceid><addsrcrecordid>eNqNissKgkAUQIcgSMp_uNBa0BnttUspciWIe5nkiuNjxmZG6_Nz0QfEWZzFOSviUMYC7xRSuiGuMa3v-_RwpFHEHJLGaZ5kF7hCjLJqBq47UDWkslZ64FYoCTlaLXDmPRTcdAbewjaQqGHs8QPZs8XKihnNjqxr3ht0f96S_f1WJA9v1Oo1obFlqyYtl1TSMwv8BRqy_64v16I7Qg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931010124</pqid></control><display><type>article</type><title>BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives</title><source>Free E- Journals</source><creator>Wang, Xiaoyue ; Wang, Jianyou ; Cao, Weili ; Wang, Kaicheng ; Paturi, Ramamohan ; Bergen, Leon</creator><creatorcontrib>Wang, Xiaoyue ; Wang, Jianyou ; Cao, Weili ; Wang, Kaicheng ; Paturi, Ramamohan ; Bergen, Leon</creatorcontrib><description>We present the Benchmark of Information Retrieval (IR) tasks with Complex Objectives (BIRCO). BIRCO evaluates the ability of IR systems to retrieve documents given multi-faceted user objectives. The benchmark's complexity and compact size make it suitable for evaluating large language model (LLM)-based information retrieval systems. We present a modular framework for investigating factors that may influence LLM performance on retrieval tasks, and identify a simple baseline model which matches or outperforms existing approaches and more complex alternatives. No approach achieves satisfactory performance on all benchmark tasks, suggesting that stronger models and new retrieval protocols are necessary to address complex user needs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Benchmarks ; Information retrieval ; Large language models ; Modular systems ; Task complexity</subject><ispartof>arXiv.org, 2024-04</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Xiaoyue</creatorcontrib><creatorcontrib>Wang, Jianyou</creatorcontrib><creatorcontrib>Cao, Weili</creatorcontrib><creatorcontrib>Wang, Kaicheng</creatorcontrib><creatorcontrib>Paturi, Ramamohan</creatorcontrib><creatorcontrib>Bergen, Leon</creatorcontrib><title>BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives</title><title>arXiv.org</title><description>We present the Benchmark of Information Retrieval (IR) tasks with Complex Objectives (BIRCO). BIRCO evaluates the ability of IR systems to retrieve documents given multi-faceted user objectives. The benchmark's complexity and compact size make it suitable for evaluating large language model (LLM)-based information retrieval systems. We present a modular framework for investigating factors that may influence LLM performance on retrieval tasks, and identify a simple baseline model which matches or outperforms existing approaches and more complex alternatives. No approach achieves satisfactory performance on all benchmark tasks, suggesting that stronger models and new retrieval protocols are necessary to address complex user needs.</description><subject>Benchmarks</subject><subject>Information retrieval</subject><subject>Large language models</subject><subject>Modular systems</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKgkAUQIcgSMp_uNBa0BnttUspciWIe5nkiuNjxmZG6_Nz0QfEWZzFOSviUMYC7xRSuiGuMa3v-_RwpFHEHJLGaZ5kF7hCjLJqBq47UDWkslZ64FYoCTlaLXDmPRTcdAbewjaQqGHs8QPZs8XKihnNjqxr3ht0f96S_f1WJA9v1Oo1obFlqyYtl1TSMwv8BRqy_64v16I7Qg</recordid><startdate>20240403</startdate><enddate>20240403</enddate><creator>Wang, Xiaoyue</creator><creator>Wang, Jianyou</creator><creator>Cao, Weili</creator><creator>Wang, Kaicheng</creator><creator>Paturi, Ramamohan</creator><creator>Bergen, Leon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240403</creationdate><title>BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives</title><author>Wang, Xiaoyue ; Wang, Jianyou ; Cao, Weili ; Wang, Kaicheng ; Paturi, Ramamohan ; Bergen, Leon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29310101243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Benchmarks</topic><topic>Information retrieval</topic><topic>Large language models</topic><topic>Modular systems</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaoyue</creatorcontrib><creatorcontrib>Wang, Jianyou</creatorcontrib><creatorcontrib>Cao, Weili</creatorcontrib><creatorcontrib>Wang, Kaicheng</creatorcontrib><creatorcontrib>Paturi, Ramamohan</creatorcontrib><creatorcontrib>Bergen, Leon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaoyue</au><au>Wang, Jianyou</au><au>Cao, Weili</au><au>Wang, Kaicheng</au><au>Paturi, Ramamohan</au><au>Bergen, Leon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives</atitle><jtitle>arXiv.org</jtitle><date>2024-04-03</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present the Benchmark of Information Retrieval (IR) tasks with Complex Objectives (BIRCO). BIRCO evaluates the ability of IR systems to retrieve documents given multi-faceted user objectives. The benchmark's complexity and compact size make it suitable for evaluating large language model (LLM)-based information retrieval systems. We present a modular framework for investigating factors that may influence LLM performance on retrieval tasks, and identify a simple baseline model which matches or outperforms existing approaches and more complex alternatives. No approach achieves satisfactory performance on all benchmark tasks, suggesting that stronger models and new retrieval protocols are necessary to address complex user needs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2931010124
source Free E- Journals
subjects Benchmarks
Information retrieval
Large language models
Modular systems
Task complexity
title BIRCO: A Benchmark of Information Retrieval Tasks with Complex Objectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A57%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=BIRCO:%20A%20Benchmark%20of%20Information%20Retrieval%20Tasks%20with%20Complex%20Objectives&rft.jtitle=arXiv.org&rft.au=Wang,%20Xiaoyue&rft.date=2024-04-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2931010124%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931010124&rft_id=info:pmid/&rfr_iscdi=true