Revisiting Convergence of AdaGrad with Relaxed Assumptions
In this study, we revisit the convergence of AdaGrad with momentum (covering AdaGrad as a special case) on non-convex smooth optimization problems. We consider a general noise model where the noise magnitude is controlled by the function value gap together with the gradient magnitude. This model enc...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hong, Yusu Lin, Junhong |
description | In this study, we revisit the convergence of AdaGrad with momentum (covering AdaGrad as a special case) on non-convex smooth optimization problems. We consider a general noise model where the noise magnitude is controlled by the function value gap together with the gradient magnitude. This model encompasses a broad range of noises including bounded noise, sub-Gaussian noise, affine variance noise and the expected smoothness, and it has been shown to be more realistic in many practical applications. Our analysis yields a probabilistic convergence rate which, under the general noise, could reach at (\tilde{\mathcal{O}}(1/\sqrt{T})). This rate does not rely on prior knowledge of problem-parameters and could accelerate to (\tilde{\mathcal{O}}(1/T)) where (T) denotes the total number iterations, when the noise parameters related to the function value gap and noise level are sufficiently small. The convergence rate thus matches the lower rate for stochastic first-order methods over non-convex smooth landscape up to logarithm terms [Arjevani et al., 2023]. We further derive a convergence bound for AdaGrad with mometum, considering the generalized smoothness where the local smoothness is controlled by a first-order function of the gradient norm. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2931006436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931006436</sourcerecordid><originalsourceid>FETCH-proquest_journals_29310064363</originalsourceid><addsrcrecordid>eNqNyrsOgjAUgOHGxESivEMTZ5LSQr1shHiZiTtp6AFLsMWegj6-Dj6A0z98_4JEXIg02Wecr0iM2DPGuNzxPBcROVYwGzTB2I6Wzs7gO7ANUNfSQquLV5q-TLjTCgb1Bk0LxOkxBuMsbsiyVQNC_OuabM-nW3lNRu-eE2Coezd5-6WaH0TKmMyEFP9dH8XWNtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931006436</pqid></control><display><type>article</type><title>Revisiting Convergence of AdaGrad with Relaxed Assumptions</title><source>Free E- Journals</source><creator>Hong, Yusu ; Lin, Junhong</creator><creatorcontrib>Hong, Yusu ; Lin, Junhong</creatorcontrib><description>In this study, we revisit the convergence of AdaGrad with momentum (covering AdaGrad as a special case) on non-convex smooth optimization problems. We consider a general noise model where the noise magnitude is controlled by the function value gap together with the gradient magnitude. This model encompasses a broad range of noises including bounded noise, sub-Gaussian noise, affine variance noise and the expected smoothness, and it has been shown to be more realistic in many practical applications. Our analysis yields a probabilistic convergence rate which, under the general noise, could reach at (\tilde{\mathcal{O}}(1/\sqrt{T})). This rate does not rely on prior knowledge of problem-parameters and could accelerate to (\tilde{\mathcal{O}}(1/T)) where (T) denotes the total number iterations, when the noise parameters related to the function value gap and noise level are sufficiently small. The convergence rate thus matches the lower rate for stochastic first-order methods over non-convex smooth landscape up to logarithm terms [Arjevani et al., 2023]. We further derive a convergence bound for AdaGrad with mometum, considering the generalized smoothness where the local smoothness is controlled by a first-order function of the gradient norm.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convergence ; Mathematical models ; Noise ; Noise (mathematics) ; Noise levels ; Parameters ; Random noise ; Smoothness</subject><ispartof>arXiv.org, 2024-09</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Hong, Yusu</creatorcontrib><creatorcontrib>Lin, Junhong</creatorcontrib><title>Revisiting Convergence of AdaGrad with Relaxed Assumptions</title><title>arXiv.org</title><description>In this study, we revisit the convergence of AdaGrad with momentum (covering AdaGrad as a special case) on non-convex smooth optimization problems. We consider a general noise model where the noise magnitude is controlled by the function value gap together with the gradient magnitude. This model encompasses a broad range of noises including bounded noise, sub-Gaussian noise, affine variance noise and the expected smoothness, and it has been shown to be more realistic in many practical applications. Our analysis yields a probabilistic convergence rate which, under the general noise, could reach at (\tilde{\mathcal{O}}(1/\sqrt{T})). This rate does not rely on prior knowledge of problem-parameters and could accelerate to (\tilde{\mathcal{O}}(1/T)) where (T) denotes the total number iterations, when the noise parameters related to the function value gap and noise level are sufficiently small. The convergence rate thus matches the lower rate for stochastic first-order methods over non-convex smooth landscape up to logarithm terms [Arjevani et al., 2023]. We further derive a convergence bound for AdaGrad with mometum, considering the generalized smoothness where the local smoothness is controlled by a first-order function of the gradient norm.</description><subject>Convergence</subject><subject>Mathematical models</subject><subject>Noise</subject><subject>Noise (mathematics)</subject><subject>Noise levels</subject><subject>Parameters</subject><subject>Random noise</subject><subject>Smoothness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsOgjAUgOHGxESivEMTZ5LSQr1shHiZiTtp6AFLsMWegj6-Dj6A0z98_4JEXIg02Wecr0iM2DPGuNzxPBcROVYwGzTB2I6Wzs7gO7ANUNfSQquLV5q-TLjTCgb1Bk0LxOkxBuMsbsiyVQNC_OuabM-nW3lNRu-eE2Coezd5-6WaH0TKmMyEFP9dH8XWNtY</recordid><startdate>20240913</startdate><enddate>20240913</enddate><creator>Hong, Yusu</creator><creator>Lin, Junhong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240913</creationdate><title>Revisiting Convergence of AdaGrad with Relaxed Assumptions</title><author>Hong, Yusu ; Lin, Junhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29310064363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convergence</topic><topic>Mathematical models</topic><topic>Noise</topic><topic>Noise (mathematics)</topic><topic>Noise levels</topic><topic>Parameters</topic><topic>Random noise</topic><topic>Smoothness</topic><toplevel>online_resources</toplevel><creatorcontrib>Hong, Yusu</creatorcontrib><creatorcontrib>Lin, Junhong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Yusu</au><au>Lin, Junhong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Revisiting Convergence of AdaGrad with Relaxed Assumptions</atitle><jtitle>arXiv.org</jtitle><date>2024-09-13</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this study, we revisit the convergence of AdaGrad with momentum (covering AdaGrad as a special case) on non-convex smooth optimization problems. We consider a general noise model where the noise magnitude is controlled by the function value gap together with the gradient magnitude. This model encompasses a broad range of noises including bounded noise, sub-Gaussian noise, affine variance noise and the expected smoothness, and it has been shown to be more realistic in many practical applications. Our analysis yields a probabilistic convergence rate which, under the general noise, could reach at (\tilde{\mathcal{O}}(1/\sqrt{T})). This rate does not rely on prior knowledge of problem-parameters and could accelerate to (\tilde{\mathcal{O}}(1/T)) where (T) denotes the total number iterations, when the noise parameters related to the function value gap and noise level are sufficiently small. The convergence rate thus matches the lower rate for stochastic first-order methods over non-convex smooth landscape up to logarithm terms [Arjevani et al., 2023]. We further derive a convergence bound for AdaGrad with mometum, considering the generalized smoothness where the local smoothness is controlled by a first-order function of the gradient norm.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2931006436 |
source | Free E- Journals |
subjects | Convergence Mathematical models Noise Noise (mathematics) Noise levels Parameters Random noise Smoothness |
title | Revisiting Convergence of AdaGrad with Relaxed Assumptions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A49%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Revisiting%20Convergence%20of%20AdaGrad%20with%20Relaxed%20Assumptions&rft.jtitle=arXiv.org&rft.au=Hong,%20Yusu&rft.date=2024-09-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2931006436%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931006436&rft_id=info:pmid/&rfr_iscdi=true |