A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering
At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in su...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2024-02, Vol.40 (1), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Computational intelligence |
container_volume | 40 |
creator | Shu, Zhixu Zhang, Kewang |
description | At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in such cases, a priority task‐oriented resource allocation method is proposed. According to the average processing time of the task execution, the corresponding priority for task is given. The tasks with different priorities are weighted to allocate computing resources, which not only ensures that the high‐priority tasks obtain sufficient computing resources, but also reduces the total time and energy consumption to complete the calculation of all tasks, thus improving the quality of service. The experimental results show that the proposed method can achieve better performance. |
doi_str_mv | 10.1111/coin.12628 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2930966813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930966813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3148-61f3caad14f7d39d2f6265988fe0dae71bd23454cda674f75154b2abe773d06d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8StOsqwqHpUQ3cDacvwoaRM72Kmq_j0OgS2zGWnmzB3dC8AtRguc6kH5xi0w4aQ8AzPMeJGVnKFzMEMlYVlR0fwSXMW4QwhhysoZ6JewM-pTuiZ20PoAnRmOPuxhMNEfgjJQtq1Xcmi8g9JpOMi4h97a1kvduC1sHOx83bQGGr01UPmuPwzjYoT_xIzbNs6YkObX4MLKNpqb3z4HH0-P76uX7HXzvF4tXzNFMSszji1VUmrMbKFppYnlhOdVWVqDtDQFrjWhLGdKS14kJsc5q4msTVFQjbimc3A36fbBfx1MHMQu-XHppSAVRRXnJaaJup8oFXyMwVjRh6aT4SQwEmOiYkxU_CSaYDzBx2T39A8pVpv123TzDQPFeqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930966813</pqid></control><display><type>article</type><title>A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering</title><source>Access via Wiley Online Library</source><creator>Shu, Zhixu ; Zhang, Kewang</creator><creatorcontrib>Shu, Zhixu ; Zhang, Kewang</creatorcontrib><description>At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in such cases, a priority task‐oriented resource allocation method is proposed. According to the average processing time of the task execution, the corresponding priority for task is given. The tasks with different priorities are weighted to allocate computing resources, which not only ensures that the high‐priority tasks obtain sufficient computing resources, but also reduces the total time and energy consumption to complete the calculation of all tasks, thus improving the quality of service. The experimental results show that the proposed method can achieve better performance.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12628</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Computation offloading ; Edge computing ; Energy consumption ; Mathematical analysis ; mobile ; Mobile computing ; offloading ; Quality of service ; Resource allocation ; weighting</subject><ispartof>Computational intelligence, 2024-02, Vol.40 (1), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3148-61f3caad14f7d39d2f6265988fe0dae71bd23454cda674f75154b2abe773d06d3</cites><orcidid>0000-0002-6596-4551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12628$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12628$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Shu, Zhixu</creatorcontrib><creatorcontrib>Zhang, Kewang</creatorcontrib><title>A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering</title><title>Computational intelligence</title><description>At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in such cases, a priority task‐oriented resource allocation method is proposed. According to the average processing time of the task execution, the corresponding priority for task is given. The tasks with different priorities are weighted to allocate computing resources, which not only ensures that the high‐priority tasks obtain sufficient computing resources, but also reduces the total time and energy consumption to complete the calculation of all tasks, thus improving the quality of service. The experimental results show that the proposed method can achieve better performance.</description><subject>Computation offloading</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Mathematical analysis</subject><subject>mobile</subject><subject>Mobile computing</subject><subject>offloading</subject><subject>Quality of service</subject><subject>Resource allocation</subject><subject>weighting</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8StOsqwqHpUQ3cDacvwoaRM72Kmq_j0OgS2zGWnmzB3dC8AtRguc6kH5xi0w4aQ8AzPMeJGVnKFzMEMlYVlR0fwSXMW4QwhhysoZ6JewM-pTuiZ20PoAnRmOPuxhMNEfgjJQtq1Xcmi8g9JpOMi4h97a1kvduC1sHOx83bQGGr01UPmuPwzjYoT_xIzbNs6YkObX4MLKNpqb3z4HH0-P76uX7HXzvF4tXzNFMSszji1VUmrMbKFppYnlhOdVWVqDtDQFrjWhLGdKS14kJsc5q4msTVFQjbimc3A36fbBfx1MHMQu-XHppSAVRRXnJaaJup8oFXyMwVjRh6aT4SQwEmOiYkxU_CSaYDzBx2T39A8pVpv123TzDQPFeqY</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Shu, Zhixu</creator><creator>Zhang, Kewang</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6596-4551</orcidid></search><sort><creationdate>202402</creationdate><title>A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering</title><author>Shu, Zhixu ; Zhang, Kewang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3148-61f3caad14f7d39d2f6265988fe0dae71bd23454cda674f75154b2abe773d06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computation offloading</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Mathematical analysis</topic><topic>mobile</topic><topic>Mobile computing</topic><topic>offloading</topic><topic>Quality of service</topic><topic>Resource allocation</topic><topic>weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Zhixu</creatorcontrib><creatorcontrib>Zhang, Kewang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Zhixu</au><au>Zhang, Kewang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering</atitle><jtitle>Computational intelligence</jtitle><date>2024-02</date><risdate>2024</risdate><volume>40</volume><issue>1</issue><epage>n/a</epage><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in such cases, a priority task‐oriented resource allocation method is proposed. According to the average processing time of the task execution, the corresponding priority for task is given. The tasks with different priorities are weighted to allocate computing resources, which not only ensures that the high‐priority tasks obtain sufficient computing resources, but also reduces the total time and energy consumption to complete the calculation of all tasks, thus improving the quality of service. The experimental results show that the proposed method can achieve better performance.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/coin.12628</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6596-4551</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2024-02, Vol.40 (1), p.n/a |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_journals_2930966813 |
source | Access via Wiley Online Library |
subjects | Computation offloading Edge computing Energy consumption Mathematical analysis mobile Mobile computing offloading Quality of service Resource allocation weighting |
title | A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanism%20for%20network%20resource%20allocation%20and%20task%20offloading%20in%20mobile%20edge%20computing%20and%20network%20engineering&rft.jtitle=Computational%20intelligence&rft.au=Shu,%20Zhixu&rft.date=2024-02&rft.volume=40&rft.issue=1&rft.epage=n/a&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12628&rft_dat=%3Cproquest_cross%3E2930966813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930966813&rft_id=info:pmid/&rfr_iscdi=true |