A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering

At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2024-02, Vol.40 (1), p.n/a
Hauptverfasser: Shu, Zhixu, Zhang, Kewang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Computational intelligence
container_volume 40
creator Shu, Zhixu
Zhang, Kewang
description At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in such cases, a priority task‐oriented resource allocation method is proposed. According to the average processing time of the task execution, the corresponding priority for task is given. The tasks with different priorities are weighted to allocate computing resources, which not only ensures that the high‐priority tasks obtain sufficient computing resources, but also reduces the total time and energy consumption to complete the calculation of all tasks, thus improving the quality of service. The experimental results show that the proposed method can achieve better performance.
doi_str_mv 10.1111/coin.12628
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2930966813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930966813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3148-61f3caad14f7d39d2f6265988fe0dae71bd23454cda674f75154b2abe773d06d3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8StOsqwqHpUQ3cDacvwoaRM72Kmq_j0OgS2zGWnmzB3dC8AtRguc6kH5xi0w4aQ8AzPMeJGVnKFzMEMlYVlR0fwSXMW4QwhhysoZ6JewM-pTuiZ20PoAnRmOPuxhMNEfgjJQtq1Xcmi8g9JpOMi4h97a1kvduC1sHOx83bQGGr01UPmuPwzjYoT_xIzbNs6YkObX4MLKNpqb3z4HH0-P76uX7HXzvF4tXzNFMSszji1VUmrMbKFppYnlhOdVWVqDtDQFrjWhLGdKS14kJsc5q4msTVFQjbimc3A36fbBfx1MHMQu-XHppSAVRRXnJaaJup8oFXyMwVjRh6aT4SQwEmOiYkxU_CSaYDzBx2T39A8pVpv123TzDQPFeqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930966813</pqid></control><display><type>article</type><title>A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering</title><source>Access via Wiley Online Library</source><creator>Shu, Zhixu ; Zhang, Kewang</creator><creatorcontrib>Shu, Zhixu ; Zhang, Kewang</creatorcontrib><description>At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in such cases, a priority task‐oriented resource allocation method is proposed. According to the average processing time of the task execution, the corresponding priority for task is given. The tasks with different priorities are weighted to allocate computing resources, which not only ensures that the high‐priority tasks obtain sufficient computing resources, but also reduces the total time and energy consumption to complete the calculation of all tasks, thus improving the quality of service. The experimental results show that the proposed method can achieve better performance.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12628</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Computation offloading ; Edge computing ; Energy consumption ; Mathematical analysis ; mobile ; Mobile computing ; offloading ; Quality of service ; Resource allocation ; weighting</subject><ispartof>Computational intelligence, 2024-02, Vol.40 (1), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3148-61f3caad14f7d39d2f6265988fe0dae71bd23454cda674f75154b2abe773d06d3</cites><orcidid>0000-0002-6596-4551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12628$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12628$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Shu, Zhixu</creatorcontrib><creatorcontrib>Zhang, Kewang</creatorcontrib><title>A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering</title><title>Computational intelligence</title><description>At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in such cases, a priority task‐oriented resource allocation method is proposed. According to the average processing time of the task execution, the corresponding priority for task is given. The tasks with different priorities are weighted to allocate computing resources, which not only ensures that the high‐priority tasks obtain sufficient computing resources, but also reduces the total time and energy consumption to complete the calculation of all tasks, thus improving the quality of service. The experimental results show that the proposed method can achieve better performance.</description><subject>Computation offloading</subject><subject>Edge computing</subject><subject>Energy consumption</subject><subject>Mathematical analysis</subject><subject>mobile</subject><subject>Mobile computing</subject><subject>offloading</subject><subject>Quality of service</subject><subject>Resource allocation</subject><subject>weighting</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QsssUNK8StOsqwqHpUQ3cDacvwoaRM72Kmq_j0OgS2zGWnmzB3dC8AtRguc6kH5xi0w4aQ8AzPMeJGVnKFzMEMlYVlR0fwSXMW4QwhhysoZ6JewM-pTuiZ20PoAnRmOPuxhMNEfgjJQtq1Xcmi8g9JpOMi4h97a1kvduC1sHOx83bQGGr01UPmuPwzjYoT_xIzbNs6YkObX4MLKNpqb3z4HH0-P76uX7HXzvF4tXzNFMSszji1VUmrMbKFppYnlhOdVWVqDtDQFrjWhLGdKS14kJsc5q4msTVFQjbimc3A36fbBfx1MHMQu-XHppSAVRRXnJaaJup8oFXyMwVjRh6aT4SQwEmOiYkxU_CSaYDzBx2T39A8pVpv123TzDQPFeqY</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Shu, Zhixu</creator><creator>Zhang, Kewang</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6596-4551</orcidid></search><sort><creationdate>202402</creationdate><title>A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering</title><author>Shu, Zhixu ; Zhang, Kewang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3148-61f3caad14f7d39d2f6265988fe0dae71bd23454cda674f75154b2abe773d06d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computation offloading</topic><topic>Edge computing</topic><topic>Energy consumption</topic><topic>Mathematical analysis</topic><topic>mobile</topic><topic>Mobile computing</topic><topic>offloading</topic><topic>Quality of service</topic><topic>Resource allocation</topic><topic>weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shu, Zhixu</creatorcontrib><creatorcontrib>Zhang, Kewang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shu, Zhixu</au><au>Zhang, Kewang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering</atitle><jtitle>Computational intelligence</jtitle><date>2024-02</date><risdate>2024</risdate><volume>40</volume><issue>1</issue><epage>n/a</epage><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>At present, most of the resource allocation methods in mobile edge computing allocate computing resources according to the time order in which task requests are calculated and unloaded, without considering the priority of tasks in practical applications. According to the computing requirements in such cases, a priority task‐oriented resource allocation method is proposed. According to the average processing time of the task execution, the corresponding priority for task is given. The tasks with different priorities are weighted to allocate computing resources, which not only ensures that the high‐priority tasks obtain sufficient computing resources, but also reduces the total time and energy consumption to complete the calculation of all tasks, thus improving the quality of service. The experimental results show that the proposed method can achieve better performance.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/coin.12628</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6596-4551</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2024-02, Vol.40 (1), p.n/a
issn 0824-7935
1467-8640
language eng
recordid cdi_proquest_journals_2930966813
source Access via Wiley Online Library
subjects Computation offloading
Edge computing
Energy consumption
Mathematical analysis
mobile
Mobile computing
offloading
Quality of service
Resource allocation
weighting
title A mechanism for network resource allocation and task offloading in mobile edge computing and network engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T04%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanism%20for%20network%20resource%20allocation%20and%20task%20offloading%20in%20mobile%20edge%20computing%20and%20network%20engineering&rft.jtitle=Computational%20intelligence&rft.au=Shu,%20Zhixu&rft.date=2024-02&rft.volume=40&rft.issue=1&rft.epage=n/a&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12628&rft_dat=%3Cproquest_cross%3E2930966813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930966813&rft_id=info:pmid/&rfr_iscdi=true