Controlling Automated Vehicles on Large Lane-Free Roundabouts

Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent vehicles 2024-01, Vol.9 (1), p.3061-3074
Hauptverfasser: Naderi, Mehdi, Papageorgiou, Markos, Troullinos, Dimitrios, Karafyllis, Iasson, Papamichail, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3074
container_issue 1
container_start_page 3061
container_title IEEE transactions on intelligent vehicles
container_volume 9
creator Naderi, Mehdi
Papageorgiou, Markos
Troullinos, Dimitrios
Karafyllis, Iasson
Papamichail, Ioannis
description Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected road branches. The developed real-time vehicle movement strategy relies on offline-computed wide overlapping movement corridors, one for each Origin-Destination (OD) movement, which delineate the admissible movement zones of corresponding OD vehicles. Also, space-dependent desired orientations are determined by destination, so as to mitigate potential vehicle conflicts and reduce trip distance. A distributed (per vehicle) movement control strategy, using two nonlinear feedback controllers (NLFC), for circular and straight movements, respectively, is employed to navigate each vehicle within the respective OD corridor toward its destination, accounting for the desired orientation and avoiding collisions with other vehicles; while boundary controllers guarantee that the corridor boundaries will not be violated, and the exit will not be missed. As an overly complicated case study, we consider the famous roundabout of Place Charles de Gaulle in Paris, featuring a width of 38 m and comprising a dozen of bidirectional radial streets, hence a total of 144 ODs. The pertinence and effectiveness of the presented method is verified via microscopic simulation and evaluation of macroscopic data.
doi_str_mv 10.1109/TIV.2023.3338261
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2930963156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10337793</ieee_id><sourcerecordid>2930963156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a91df4a744d54ec8fdecd066e4b501a790aa2794958b75096ec5cd27cc213c323</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvHjwseN46-dokBw-lWC0UBKm9hjQ7W7dsNzXZPfjv3dIKXuadw_POwEPIPYUppWCe1svNlAHjU865ZgW9IiPGlcm1AXH9t2upb8kkpT0A0EIzDWZEnueh7WJomrrdZbO-CwfXYZlt8Kv2DaYstNnKxR0Os8V8ERGzj9C3pduGvkt35KZyTcLJJcfkc_Gynr_lq_fX5Xy2yj0TssudoWUlnBKilAK9rkr0JRQFiq0E6pQB55gywki9VRJMgV76kinvGeWeMz4mj-e7xxi-e0yd3Yc-tsNLywwfCpzKYqDgTPkYUopY2WOsDy7-WAr25MkOnuzJk714GioP50qNiP9wzpUynP8CtZhixQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930963156</pqid></control><display><type>article</type><title>Controlling Automated Vehicles on Large Lane-Free Roundabouts</title><source>IEEE Electronic Library (IEL)</source><creator>Naderi, Mehdi ; Papageorgiou, Markos ; Troullinos, Dimitrios ; Karafyllis, Iasson ; Papamichail, Ioannis</creator><creatorcontrib>Naderi, Mehdi ; Papageorgiou, Markos ; Troullinos, Dimitrios ; Karafyllis, Iasson ; Papamichail, Ioannis</creatorcontrib><description>Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected road branches. The developed real-time vehicle movement strategy relies on offline-computed wide overlapping movement corridors, one for each Origin-Destination (OD) movement, which delineate the admissible movement zones of corresponding OD vehicles. Also, space-dependent desired orientations are determined by destination, so as to mitigate potential vehicle conflicts and reduce trip distance. A distributed (per vehicle) movement control strategy, using two nonlinear feedback controllers (NLFC), for circular and straight movements, respectively, is employed to navigate each vehicle within the respective OD corridor toward its destination, accounting for the desired orientation and avoiding collisions with other vehicles; while boundary controllers guarantee that the corridor boundaries will not be violated, and the exit will not be missed. As an overly complicated case study, we consider the famous roundabout of Place Charles de Gaulle in Paris, featuring a width of 38 m and comprising a dozen of bidirectional radial streets, hence a total of 144 ODs. The pertinence and effectiveness of the presented method is verified via microscopic simulation and evaluation of macroscopic data.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2023.3338261</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Automated vehicles ; Automation ; Bicycles ; Complexity theory ; Feedback control ; Intelligent vehicles ; lane-free traffic ; microscopic simulation ; Nonlinear control ; Nonlinear feedback ; nonlinear feedback controller ; Roads ; Safety ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE transactions on intelligent vehicles, 2024-01, Vol.9 (1), p.3061-3074</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a91df4a744d54ec8fdecd066e4b501a790aa2794958b75096ec5cd27cc213c323</cites><orcidid>0000-0003-3228-3888 ; 0000-0002-1335-9640 ; 0000-0001-5821-4982 ; 0000-0002-6332-9327 ; 0000-0002-7259-9409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10337793$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10337793$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naderi, Mehdi</creatorcontrib><creatorcontrib>Papageorgiou, Markos</creatorcontrib><creatorcontrib>Troullinos, Dimitrios</creatorcontrib><creatorcontrib>Karafyllis, Iasson</creatorcontrib><creatorcontrib>Papamichail, Ioannis</creatorcontrib><title>Controlling Automated Vehicles on Large Lane-Free Roundabouts</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected road branches. The developed real-time vehicle movement strategy relies on offline-computed wide overlapping movement corridors, one for each Origin-Destination (OD) movement, which delineate the admissible movement zones of corresponding OD vehicles. Also, space-dependent desired orientations are determined by destination, so as to mitigate potential vehicle conflicts and reduce trip distance. A distributed (per vehicle) movement control strategy, using two nonlinear feedback controllers (NLFC), for circular and straight movements, respectively, is employed to navigate each vehicle within the respective OD corridor toward its destination, accounting for the desired orientation and avoiding collisions with other vehicles; while boundary controllers guarantee that the corridor boundaries will not be violated, and the exit will not be missed. As an overly complicated case study, we consider the famous roundabout of Place Charles de Gaulle in Paris, featuring a width of 38 m and comprising a dozen of bidirectional radial streets, hence a total of 144 ODs. The pertinence and effectiveness of the presented method is verified via microscopic simulation and evaluation of macroscopic data.</description><subject>Adaptive control</subject><subject>Automated vehicles</subject><subject>Automation</subject><subject>Bicycles</subject><subject>Complexity theory</subject><subject>Feedback control</subject><subject>Intelligent vehicles</subject><subject>lane-free traffic</subject><subject>microscopic simulation</subject><subject>Nonlinear control</subject><subject>Nonlinear feedback</subject><subject>nonlinear feedback controller</subject><subject>Roads</subject><subject>Safety</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvHjwseN46-dokBw-lWC0UBKm9hjQ7W7dsNzXZPfjv3dIKXuadw_POwEPIPYUppWCe1svNlAHjU865ZgW9IiPGlcm1AXH9t2upb8kkpT0A0EIzDWZEnueh7WJomrrdZbO-CwfXYZlt8Kv2DaYstNnKxR0Os8V8ERGzj9C3pduGvkt35KZyTcLJJcfkc_Gynr_lq_fX5Xy2yj0TssudoWUlnBKilAK9rkr0JRQFiq0E6pQB55gywki9VRJMgV76kinvGeWeMz4mj-e7xxi-e0yd3Yc-tsNLywwfCpzKYqDgTPkYUopY2WOsDy7-WAr25MkOnuzJk714GioP50qNiP9wzpUynP8CtZhixQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Naderi, Mehdi</creator><creator>Papageorgiou, Markos</creator><creator>Troullinos, Dimitrios</creator><creator>Karafyllis, Iasson</creator><creator>Papamichail, Ioannis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3228-3888</orcidid><orcidid>https://orcid.org/0000-0002-1335-9640</orcidid><orcidid>https://orcid.org/0000-0001-5821-4982</orcidid><orcidid>https://orcid.org/0000-0002-6332-9327</orcidid><orcidid>https://orcid.org/0000-0002-7259-9409</orcidid></search><sort><creationdate>202401</creationdate><title>Controlling Automated Vehicles on Large Lane-Free Roundabouts</title><author>Naderi, Mehdi ; Papageorgiou, Markos ; Troullinos, Dimitrios ; Karafyllis, Iasson ; Papamichail, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a91df4a744d54ec8fdecd066e4b501a790aa2794958b75096ec5cd27cc213c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Automated vehicles</topic><topic>Automation</topic><topic>Bicycles</topic><topic>Complexity theory</topic><topic>Feedback control</topic><topic>Intelligent vehicles</topic><topic>lane-free traffic</topic><topic>microscopic simulation</topic><topic>Nonlinear control</topic><topic>Nonlinear feedback</topic><topic>nonlinear feedback controller</topic><topic>Roads</topic><topic>Safety</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naderi, Mehdi</creatorcontrib><creatorcontrib>Papageorgiou, Markos</creatorcontrib><creatorcontrib>Troullinos, Dimitrios</creatorcontrib><creatorcontrib>Karafyllis, Iasson</creatorcontrib><creatorcontrib>Papamichail, Ioannis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naderi, Mehdi</au><au>Papageorgiou, Markos</au><au>Troullinos, Dimitrios</au><au>Karafyllis, Iasson</au><au>Papamichail, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Automated Vehicles on Large Lane-Free Roundabouts</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2024-01</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>3061</spage><epage>3074</epage><pages>3061-3074</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected road branches. The developed real-time vehicle movement strategy relies on offline-computed wide overlapping movement corridors, one for each Origin-Destination (OD) movement, which delineate the admissible movement zones of corresponding OD vehicles. Also, space-dependent desired orientations are determined by destination, so as to mitigate potential vehicle conflicts and reduce trip distance. A distributed (per vehicle) movement control strategy, using two nonlinear feedback controllers (NLFC), for circular and straight movements, respectively, is employed to navigate each vehicle within the respective OD corridor toward its destination, accounting for the desired orientation and avoiding collisions with other vehicles; while boundary controllers guarantee that the corridor boundaries will not be violated, and the exit will not be missed. As an overly complicated case study, we consider the famous roundabout of Place Charles de Gaulle in Paris, featuring a width of 38 m and comprising a dozen of bidirectional radial streets, hence a total of 144 ODs. The pertinence and effectiveness of the presented method is verified via microscopic simulation and evaluation of macroscopic data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2023.3338261</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3228-3888</orcidid><orcidid>https://orcid.org/0000-0002-1335-9640</orcidid><orcidid>https://orcid.org/0000-0001-5821-4982</orcidid><orcidid>https://orcid.org/0000-0002-6332-9327</orcidid><orcidid>https://orcid.org/0000-0002-7259-9409</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2024-01, Vol.9 (1), p.3061-3074
issn 2379-8858
2379-8904
language eng
recordid cdi_proquest_journals_2930963156
source IEEE Electronic Library (IEL)
subjects Adaptive control
Automated vehicles
Automation
Bicycles
Complexity theory
Feedback control
Intelligent vehicles
lane-free traffic
microscopic simulation
Nonlinear control
Nonlinear feedback
nonlinear feedback controller
Roads
Safety
Vehicle dynamics
Vehicles
title Controlling Automated Vehicles on Large Lane-Free Roundabouts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Automated%20Vehicles%20on%20Large%20Lane-Free%20Roundabouts&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Naderi,%20Mehdi&rft.date=2024-01&rft.volume=9&rft.issue=1&rft.spage=3061&rft.epage=3074&rft.pages=3061-3074&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2023.3338261&rft_dat=%3Cproquest_RIE%3E2930963156%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930963156&rft_id=info:pmid/&rft_ieee_id=10337793&rfr_iscdi=true