Controlling Automated Vehicles on Large Lane-Free Roundabouts
Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected ro...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2024-01, Vol.9 (1), p.3061-3074 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3074 |
---|---|
container_issue | 1 |
container_start_page | 3061 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 9 |
creator | Naderi, Mehdi Papageorgiou, Markos Troullinos, Dimitrios Karafyllis, Iasson Papamichail, Ioannis |
description | Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected road branches. The developed real-time vehicle movement strategy relies on offline-computed wide overlapping movement corridors, one for each Origin-Destination (OD) movement, which delineate the admissible movement zones of corresponding OD vehicles. Also, space-dependent desired orientations are determined by destination, so as to mitigate potential vehicle conflicts and reduce trip distance. A distributed (per vehicle) movement control strategy, using two nonlinear feedback controllers (NLFC), for circular and straight movements, respectively, is employed to navigate each vehicle within the respective OD corridor toward its destination, accounting for the desired orientation and avoiding collisions with other vehicles; while boundary controllers guarantee that the corridor boundaries will not be violated, and the exit will not be missed. As an overly complicated case study, we consider the famous roundabout of Place Charles de Gaulle in Paris, featuring a width of 38 m and comprising a dozen of bidirectional radial streets, hence a total of 144 ODs. The pertinence and effectiveness of the presented method is verified via microscopic simulation and evaluation of macroscopic data. |
doi_str_mv | 10.1109/TIV.2023.3338261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2930963156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10337793</ieee_id><sourcerecordid>2930963156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-a91df4a744d54ec8fdecd066e4b501a790aa2794958b75096ec5cd27cc213c323</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvHjwseN46-dokBw-lWC0UBKm9hjQ7W7dsNzXZPfjv3dIKXuadw_POwEPIPYUppWCe1svNlAHjU865ZgW9IiPGlcm1AXH9t2upb8kkpT0A0EIzDWZEnueh7WJomrrdZbO-CwfXYZlt8Kv2DaYstNnKxR0Os8V8ERGzj9C3pduGvkt35KZyTcLJJcfkc_Gynr_lq_fX5Xy2yj0TssudoWUlnBKilAK9rkr0JRQFiq0E6pQB55gywki9VRJMgV76kinvGeWeMz4mj-e7xxi-e0yd3Yc-tsNLywwfCpzKYqDgTPkYUopY2WOsDy7-WAr25MkOnuzJk714GioP50qNiP9wzpUynP8CtZhixQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930963156</pqid></control><display><type>article</type><title>Controlling Automated Vehicles on Large Lane-Free Roundabouts</title><source>IEEE Electronic Library (IEL)</source><creator>Naderi, Mehdi ; Papageorgiou, Markos ; Troullinos, Dimitrios ; Karafyllis, Iasson ; Papamichail, Ioannis</creator><creatorcontrib>Naderi, Mehdi ; Papageorgiou, Markos ; Troullinos, Dimitrios ; Karafyllis, Iasson ; Papamichail, Ioannis</creatorcontrib><description>Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected road branches. The developed real-time vehicle movement strategy relies on offline-computed wide overlapping movement corridors, one for each Origin-Destination (OD) movement, which delineate the admissible movement zones of corresponding OD vehicles. Also, space-dependent desired orientations are determined by destination, so as to mitigate potential vehicle conflicts and reduce trip distance. A distributed (per vehicle) movement control strategy, using two nonlinear feedback controllers (NLFC), for circular and straight movements, respectively, is employed to navigate each vehicle within the respective OD corridor toward its destination, accounting for the desired orientation and avoiding collisions with other vehicles; while boundary controllers guarantee that the corridor boundaries will not be violated, and the exit will not be missed. As an overly complicated case study, we consider the famous roundabout of Place Charles de Gaulle in Paris, featuring a width of 38 m and comprising a dozen of bidirectional radial streets, hence a total of 144 ODs. The pertinence and effectiveness of the presented method is verified via microscopic simulation and evaluation of macroscopic data.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2023.3338261</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Automated vehicles ; Automation ; Bicycles ; Complexity theory ; Feedback control ; Intelligent vehicles ; lane-free traffic ; microscopic simulation ; Nonlinear control ; Nonlinear feedback ; nonlinear feedback controller ; Roads ; Safety ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE transactions on intelligent vehicles, 2024-01, Vol.9 (1), p.3061-3074</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-a91df4a744d54ec8fdecd066e4b501a790aa2794958b75096ec5cd27cc213c323</cites><orcidid>0000-0003-3228-3888 ; 0000-0002-1335-9640 ; 0000-0001-5821-4982 ; 0000-0002-6332-9327 ; 0000-0002-7259-9409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10337793$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10337793$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Naderi, Mehdi</creatorcontrib><creatorcontrib>Papageorgiou, Markos</creatorcontrib><creatorcontrib>Troullinos, Dimitrios</creatorcontrib><creatorcontrib>Karafyllis, Iasson</creatorcontrib><creatorcontrib>Papamichail, Ioannis</creatorcontrib><title>Controlling Automated Vehicles on Large Lane-Free Roundabouts</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected road branches. The developed real-time vehicle movement strategy relies on offline-computed wide overlapping movement corridors, one for each Origin-Destination (OD) movement, which delineate the admissible movement zones of corresponding OD vehicles. Also, space-dependent desired orientations are determined by destination, so as to mitigate potential vehicle conflicts and reduce trip distance. A distributed (per vehicle) movement control strategy, using two nonlinear feedback controllers (NLFC), for circular and straight movements, respectively, is employed to navigate each vehicle within the respective OD corridor toward its destination, accounting for the desired orientation and avoiding collisions with other vehicles; while boundary controllers guarantee that the corridor boundaries will not be violated, and the exit will not be missed. As an overly complicated case study, we consider the famous roundabout of Place Charles de Gaulle in Paris, featuring a width of 38 m and comprising a dozen of bidirectional radial streets, hence a total of 144 ODs. The pertinence and effectiveness of the presented method is verified via microscopic simulation and evaluation of macroscopic data.</description><subject>Adaptive control</subject><subject>Automated vehicles</subject><subject>Automation</subject><subject>Bicycles</subject><subject>Complexity theory</subject><subject>Feedback control</subject><subject>Intelligent vehicles</subject><subject>lane-free traffic</subject><subject>microscopic simulation</subject><subject>Nonlinear control</subject><subject>Nonlinear feedback</subject><subject>nonlinear feedback controller</subject><subject>Roads</subject><subject>Safety</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvHjwseN46-dokBw-lWC0UBKm9hjQ7W7dsNzXZPfjv3dIKXuadw_POwEPIPYUppWCe1svNlAHjU865ZgW9IiPGlcm1AXH9t2upb8kkpT0A0EIzDWZEnueh7WJomrrdZbO-CwfXYZlt8Kv2DaYstNnKxR0Os8V8ERGzj9C3pduGvkt35KZyTcLJJcfkc_Gynr_lq_fX5Xy2yj0TssudoWUlnBKilAK9rkr0JRQFiq0E6pQB55gywki9VRJMgV76kinvGeWeMz4mj-e7xxi-e0yd3Yc-tsNLywwfCpzKYqDgTPkYUopY2WOsDy7-WAr25MkOnuzJk714GioP50qNiP9wzpUynP8CtZhixQ</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Naderi, Mehdi</creator><creator>Papageorgiou, Markos</creator><creator>Troullinos, Dimitrios</creator><creator>Karafyllis, Iasson</creator><creator>Papamichail, Ioannis</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3228-3888</orcidid><orcidid>https://orcid.org/0000-0002-1335-9640</orcidid><orcidid>https://orcid.org/0000-0001-5821-4982</orcidid><orcidid>https://orcid.org/0000-0002-6332-9327</orcidid><orcidid>https://orcid.org/0000-0002-7259-9409</orcidid></search><sort><creationdate>202401</creationdate><title>Controlling Automated Vehicles on Large Lane-Free Roundabouts</title><author>Naderi, Mehdi ; Papageorgiou, Markos ; Troullinos, Dimitrios ; Karafyllis, Iasson ; Papamichail, Ioannis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-a91df4a744d54ec8fdecd066e4b501a790aa2794958b75096ec5cd27cc213c323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Automated vehicles</topic><topic>Automation</topic><topic>Bicycles</topic><topic>Complexity theory</topic><topic>Feedback control</topic><topic>Intelligent vehicles</topic><topic>lane-free traffic</topic><topic>microscopic simulation</topic><topic>Nonlinear control</topic><topic>Nonlinear feedback</topic><topic>nonlinear feedback controller</topic><topic>Roads</topic><topic>Safety</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naderi, Mehdi</creatorcontrib><creatorcontrib>Papageorgiou, Markos</creatorcontrib><creatorcontrib>Troullinos, Dimitrios</creatorcontrib><creatorcontrib>Karafyllis, Iasson</creatorcontrib><creatorcontrib>Papamichail, Ioannis</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Naderi, Mehdi</au><au>Papageorgiou, Markos</au><au>Troullinos, Dimitrios</au><au>Karafyllis, Iasson</au><au>Papamichail, Ioannis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Automated Vehicles on Large Lane-Free Roundabouts</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2024-01</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>3061</spage><epage>3074</epage><pages>3061-3074</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>Controlling automated vehicles on large lane-free roundabouts is challenging because of the geometrical complexity and frequent conflicts among entering, rotating, and exiting vehicles. This paper proposes a comprehensive methodology to control the vehicles within the roundabout and the connected road branches. The developed real-time vehicle movement strategy relies on offline-computed wide overlapping movement corridors, one for each Origin-Destination (OD) movement, which delineate the admissible movement zones of corresponding OD vehicles. Also, space-dependent desired orientations are determined by destination, so as to mitigate potential vehicle conflicts and reduce trip distance. A distributed (per vehicle) movement control strategy, using two nonlinear feedback controllers (NLFC), for circular and straight movements, respectively, is employed to navigate each vehicle within the respective OD corridor toward its destination, accounting for the desired orientation and avoiding collisions with other vehicles; while boundary controllers guarantee that the corridor boundaries will not be violated, and the exit will not be missed. As an overly complicated case study, we consider the famous roundabout of Place Charles de Gaulle in Paris, featuring a width of 38 m and comprising a dozen of bidirectional radial streets, hence a total of 144 ODs. The pertinence and effectiveness of the presented method is verified via microscopic simulation and evaluation of macroscopic data.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2023.3338261</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3228-3888</orcidid><orcidid>https://orcid.org/0000-0002-1335-9640</orcidid><orcidid>https://orcid.org/0000-0001-5821-4982</orcidid><orcidid>https://orcid.org/0000-0002-6332-9327</orcidid><orcidid>https://orcid.org/0000-0002-7259-9409</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2024-01, Vol.9 (1), p.3061-3074 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_proquest_journals_2930963156 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Automated vehicles Automation Bicycles Complexity theory Feedback control Intelligent vehicles lane-free traffic microscopic simulation Nonlinear control Nonlinear feedback nonlinear feedback controller Roads Safety Vehicle dynamics Vehicles |
title | Controlling Automated Vehicles on Large Lane-Free Roundabouts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Automated%20Vehicles%20on%20Large%20Lane-Free%20Roundabouts&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=Naderi,%20Mehdi&rft.date=2024-01&rft.volume=9&rft.issue=1&rft.spage=3061&rft.epage=3074&rft.pages=3061-3074&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2023.3338261&rft_dat=%3Cproquest_RIE%3E2930963156%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930963156&rft_id=info:pmid/&rft_ieee_id=10337793&rfr_iscdi=true |