Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment
As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief...
Gespeichert in:
Veröffentlicht in: | Physics of atomic nuclei 2023-12, Vol.86 (6), p.1063-1068 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1068 |
---|---|
container_issue | 6 |
container_start_page | 1063 |
container_title | Physics of atomic nuclei |
container_volume | 86 |
creator | Kurinov, K. O. Kuleshov, D. A. Stenkin, Yu. V. Shchegolev, O. B. |
description | As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief overview of analytical and ML (Machine Learning) methods for shower and primary particle parameters’ reconstruction for simulation of the data. Also, methods for estimation the uncertainty of such reconstruction are presented. |
doi_str_mv | 10.1134/S1063778824010277 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2930595657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A783708931</galeid><sourcerecordid>A783708931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-c72c48b70a0176f0c96481eca0975d2181f304425ad4732c9cbd26b3c5b6fcc03</originalsourceid><addsrcrecordid>eNp1kVtLwzAUgIsoOKc_wLeATz505tamfSzb1MG8sE3wraRpsmVs6UxS2P69GRVkiJyHHHK-L5yTE0W3CA4QIvRhjmBKGMsyTCGCmLGzqIeSFMdpjj_PQx7K8bF-GV05t4YQoSyBvWi-kGJl9FcrHVCNBSPuOSgM3xycdoCbGrxbveX2AF64c2AmRWOct63wujFAG-BXEoxfRwUY73cyoNL46-hC8Y2TNz9nP_p4HC-Gz_H07WkyLKaxIBT5WDAsaFYxyCFiqYIiT2mGpOAwZ0mNUYYUgZTihNeUESxyUdU4rYhIqlQJAUk_uuve3dnmOIAv101rQ--uxDmBSZ6kCQvUoKOWfCNLbVTjLRcharnVYRqpdLgvWEYYzHKCgnB_IgTGy71f8ta5cjKfnbKoY4VtnLNSlbvuu0oEy-Niyj-LCQ7uHBdYs5T2t-3_pW_Pzo0H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930595657</pqid></control><display><type>article</type><title>Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment</title><source>Springer Nature - Complete Springer Journals</source><creator>Kurinov, K. O. ; Kuleshov, D. A. ; Stenkin, Yu. V. ; Shchegolev, O. B.</creator><creatorcontrib>Kurinov, K. O. ; Kuleshov, D. A. ; Stenkin, Yu. V. ; Shchegolev, O. B.</creatorcontrib><description>As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief overview of analytical and ML (Machine Learning) methods for shower and primary particle parameters’ reconstruction for simulation of the data. Also, methods for estimation the uncertainty of such reconstruction are presented.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778824010277</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Data analysis ; Electromagnetism ; Electronic components industry ; ELEMENTARY PARTICLES AND FIELDS/Experiment ; High altitude ; Machine learning ; Methods ; Neutron counters ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Reconstruction ; Thermal neutrons</subject><ispartof>Physics of atomic nuclei, 2023-12, Vol.86 (6), p.1063-1068</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-c72c48b70a0176f0c96481eca0975d2181f304425ad4732c9cbd26b3c5b6fcc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778824010277$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778824010277$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kurinov, K. O.</creatorcontrib><creatorcontrib>Kuleshov, D. A.</creatorcontrib><creatorcontrib>Stenkin, Yu. V.</creatorcontrib><creatorcontrib>Shchegolev, O. B.</creatorcontrib><title>Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief overview of analytical and ML (Machine Learning) methods for shower and primary particle parameters’ reconstruction for simulation of the data. Also, methods for estimation the uncertainty of such reconstruction are presented.</description><subject>Data analysis</subject><subject>Electromagnetism</subject><subject>Electronic components industry</subject><subject>ELEMENTARY PARTICLES AND FIELDS/Experiment</subject><subject>High altitude</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neutron counters</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reconstruction</subject><subject>Thermal neutrons</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kVtLwzAUgIsoOKc_wLeATz505tamfSzb1MG8sE3wraRpsmVs6UxS2P69GRVkiJyHHHK-L5yTE0W3CA4QIvRhjmBKGMsyTCGCmLGzqIeSFMdpjj_PQx7K8bF-GV05t4YQoSyBvWi-kGJl9FcrHVCNBSPuOSgM3xycdoCbGrxbveX2AF64c2AmRWOct63wujFAG-BXEoxfRwUY73cyoNL46-hC8Y2TNz9nP_p4HC-Gz_H07WkyLKaxIBT5WDAsaFYxyCFiqYIiT2mGpOAwZ0mNUYYUgZTihNeUESxyUdU4rYhIqlQJAUk_uuve3dnmOIAv101rQ--uxDmBSZ6kCQvUoKOWfCNLbVTjLRcharnVYRqpdLgvWEYYzHKCgnB_IgTGy71f8ta5cjKfnbKoY4VtnLNSlbvuu0oEy-Niyj-LCQ7uHBdYs5T2t-3_pW_Pzo0H</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kurinov, K. O.</creator><creator>Kuleshov, D. A.</creator><creator>Stenkin, Yu. V.</creator><creator>Shchegolev, O. B.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20231201</creationdate><title>Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment</title><author>Kurinov, K. O. ; Kuleshov, D. A. ; Stenkin, Yu. V. ; Shchegolev, O. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-c72c48b70a0176f0c96481eca0975d2181f304425ad4732c9cbd26b3c5b6fcc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data analysis</topic><topic>Electromagnetism</topic><topic>Electronic components industry</topic><topic>ELEMENTARY PARTICLES AND FIELDS/Experiment</topic><topic>High altitude</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neutron counters</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reconstruction</topic><topic>Thermal neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurinov, K. O.</creatorcontrib><creatorcontrib>Kuleshov, D. A.</creatorcontrib><creatorcontrib>Stenkin, Yu. V.</creatorcontrib><creatorcontrib>Shchegolev, O. B.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurinov, K. O.</au><au>Kuleshov, D. A.</au><au>Stenkin, Yu. V.</au><au>Shchegolev, O. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>86</volume><issue>6</issue><spage>1063</spage><epage>1068</epage><pages>1063-1068</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief overview of analytical and ML (Machine Learning) methods for shower and primary particle parameters’ reconstruction for simulation of the data. Also, methods for estimation the uncertainty of such reconstruction are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778824010277</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7788 |
ispartof | Physics of atomic nuclei, 2023-12, Vol.86 (6), p.1063-1068 |
issn | 1063-7788 1562-692X |
language | eng |
recordid | cdi_proquest_journals_2930595657 |
source | Springer Nature - Complete Springer Journals |
subjects | Data analysis Electromagnetism Electronic components industry ELEMENTARY PARTICLES AND FIELDS/Experiment High altitude Machine learning Methods Neutron counters Particle and Nuclear Physics Physics Physics and Astronomy Reconstruction Thermal neutrons |
title | Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Techniques%20for%20Data%20Analysis%20and%20Primary%20Mass%20Reconstruction%20in%20the%20ENDA%20Experiment&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Kurinov,%20K.%20O.&rft.date=2023-12-01&rft.volume=86&rft.issue=6&rft.spage=1063&rft.epage=1068&rft.pages=1063-1068&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778824010277&rft_dat=%3Cgale_proqu%3EA783708931%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930595657&rft_id=info:pmid/&rft_galeid=A783708931&rfr_iscdi=true |