Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment

As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of atomic nuclei 2023-12, Vol.86 (6), p.1063-1068
Hauptverfasser: Kurinov, K. O., Kuleshov, D. A., Stenkin, Yu. V., Shchegolev, O. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1068
container_issue 6
container_start_page 1063
container_title Physics of atomic nuclei
container_volume 86
creator Kurinov, K. O.
Kuleshov, D. A.
Stenkin, Yu. V.
Shchegolev, O. B.
description As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief overview of analytical and ML (Machine Learning) methods for shower and primary particle parameters’ reconstruction for simulation of the data. Also, methods for estimation the uncertainty of such reconstruction are presented.
doi_str_mv 10.1134/S1063778824010277
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2930595657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A783708931</galeid><sourcerecordid>A783708931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-c72c48b70a0176f0c96481eca0975d2181f304425ad4732c9cbd26b3c5b6fcc03</originalsourceid><addsrcrecordid>eNp1kVtLwzAUgIsoOKc_wLeATz505tamfSzb1MG8sE3wraRpsmVs6UxS2P69GRVkiJyHHHK-L5yTE0W3CA4QIvRhjmBKGMsyTCGCmLGzqIeSFMdpjj_PQx7K8bF-GV05t4YQoSyBvWi-kGJl9FcrHVCNBSPuOSgM3xycdoCbGrxbveX2AF64c2AmRWOct63wujFAG-BXEoxfRwUY73cyoNL46-hC8Y2TNz9nP_p4HC-Gz_H07WkyLKaxIBT5WDAsaFYxyCFiqYIiT2mGpOAwZ0mNUYYUgZTihNeUESxyUdU4rYhIqlQJAUk_uuve3dnmOIAv101rQ--uxDmBSZ6kCQvUoKOWfCNLbVTjLRcharnVYRqpdLgvWEYYzHKCgnB_IgTGy71f8ta5cjKfnbKoY4VtnLNSlbvuu0oEy-Niyj-LCQ7uHBdYs5T2t-3_pW_Pzo0H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930595657</pqid></control><display><type>article</type><title>Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment</title><source>Springer Nature - Complete Springer Journals</source><creator>Kurinov, K. O. ; Kuleshov, D. A. ; Stenkin, Yu. V. ; Shchegolev, O. B.</creator><creatorcontrib>Kurinov, K. O. ; Kuleshov, D. A. ; Stenkin, Yu. V. ; Shchegolev, O. B.</creatorcontrib><description>As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief overview of analytical and ML (Machine Learning) methods for shower and primary particle parameters’ reconstruction for simulation of the data. Also, methods for estimation the uncertainty of such reconstruction are presented.</description><identifier>ISSN: 1063-7788</identifier><identifier>EISSN: 1562-692X</identifier><identifier>DOI: 10.1134/S1063778824010277</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Data analysis ; Electromagnetism ; Electronic components industry ; ELEMENTARY PARTICLES AND FIELDS/Experiment ; High altitude ; Machine learning ; Methods ; Neutron counters ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Reconstruction ; Thermal neutrons</subject><ispartof>Physics of atomic nuclei, 2023-12, Vol.86 (6), p.1063-1068</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c341t-c72c48b70a0176f0c96481eca0975d2181f304425ad4732c9cbd26b3c5b6fcc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063778824010277$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063778824010277$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kurinov, K. O.</creatorcontrib><creatorcontrib>Kuleshov, D. A.</creatorcontrib><creatorcontrib>Stenkin, Yu. V.</creatorcontrib><creatorcontrib>Shchegolev, O. B.</creatorcontrib><title>Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment</title><title>Physics of atomic nuclei</title><addtitle>Phys. Atom. Nuclei</addtitle><description>As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief overview of analytical and ML (Machine Learning) methods for shower and primary particle parameters’ reconstruction for simulation of the data. Also, methods for estimation the uncertainty of such reconstruction are presented.</description><subject>Data analysis</subject><subject>Electromagnetism</subject><subject>Electronic components industry</subject><subject>ELEMENTARY PARTICLES AND FIELDS/Experiment</subject><subject>High altitude</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neutron counters</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reconstruction</subject><subject>Thermal neutrons</subject><issn>1063-7788</issn><issn>1562-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kVtLwzAUgIsoOKc_wLeATz505tamfSzb1MG8sE3wraRpsmVs6UxS2P69GRVkiJyHHHK-L5yTE0W3CA4QIvRhjmBKGMsyTCGCmLGzqIeSFMdpjj_PQx7K8bF-GV05t4YQoSyBvWi-kGJl9FcrHVCNBSPuOSgM3xycdoCbGrxbveX2AF64c2AmRWOct63wujFAG-BXEoxfRwUY73cyoNL46-hC8Y2TNz9nP_p4HC-Gz_H07WkyLKaxIBT5WDAsaFYxyCFiqYIiT2mGpOAwZ0mNUYYUgZTihNeUESxyUdU4rYhIqlQJAUk_uuve3dnmOIAv101rQ--uxDmBSZ6kCQvUoKOWfCNLbVTjLRcharnVYRqpdLgvWEYYzHKCgnB_IgTGy71f8ta5cjKfnbKoY4VtnLNSlbvuu0oEy-Niyj-LCQ7uHBdYs5T2t-3_pW_Pzo0H</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kurinov, K. O.</creator><creator>Kuleshov, D. A.</creator><creator>Stenkin, Yu. V.</creator><creator>Shchegolev, O. B.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20231201</creationdate><title>Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment</title><author>Kurinov, K. O. ; Kuleshov, D. A. ; Stenkin, Yu. V. ; Shchegolev, O. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-c72c48b70a0176f0c96481eca0975d2181f304425ad4732c9cbd26b3c5b6fcc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data analysis</topic><topic>Electromagnetism</topic><topic>Electronic components industry</topic><topic>ELEMENTARY PARTICLES AND FIELDS/Experiment</topic><topic>High altitude</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neutron counters</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reconstruction</topic><topic>Thermal neutrons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurinov, K. O.</creatorcontrib><creatorcontrib>Kuleshov, D. A.</creatorcontrib><creatorcontrib>Stenkin, Yu. V.</creatorcontrib><creatorcontrib>Shchegolev, O. B.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Physics of atomic nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurinov, K. O.</au><au>Kuleshov, D. A.</au><au>Stenkin, Yu. V.</au><au>Shchegolev, O. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment</atitle><jtitle>Physics of atomic nuclei</jtitle><stitle>Phys. Atom. Nuclei</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>86</volume><issue>6</issue><spage>1063</spage><epage>1068</epage><pages>1063-1068</pages><issn>1063-7788</issn><eissn>1562-692X</eissn><abstract>As a part of the high-altitude LHAASO project, ENDA (Electron Neutron Detector Array) is being created in China. The ENDA concept consists in simultaneous registration of the electromagnetic and thermal neutron components (being a part of hadronic component) of the EAS. The article provides a brief overview of analytical and ML (Machine Learning) methods for shower and primary particle parameters’ reconstruction for simulation of the data. Also, methods for estimation the uncertainty of such reconstruction are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063778824010277</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7788
ispartof Physics of atomic nuclei, 2023-12, Vol.86 (6), p.1063-1068
issn 1063-7788
1562-692X
language eng
recordid cdi_proquest_journals_2930595657
source Springer Nature - Complete Springer Journals
subjects Data analysis
Electromagnetism
Electronic components industry
ELEMENTARY PARTICLES AND FIELDS/Experiment
High altitude
Machine learning
Methods
Neutron counters
Particle and Nuclear Physics
Physics
Physics and Astronomy
Reconstruction
Thermal neutrons
title Techniques for Data Analysis and Primary Mass Reconstruction in the ENDA Experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Techniques%20for%20Data%20Analysis%20and%20Primary%20Mass%20Reconstruction%20in%20the%20ENDA%20Experiment&rft.jtitle=Physics%20of%20atomic%20nuclei&rft.au=Kurinov,%20K.%20O.&rft.date=2023-12-01&rft.volume=86&rft.issue=6&rft.spage=1063&rft.epage=1068&rft.pages=1063-1068&rft.issn=1063-7788&rft.eissn=1562-692X&rft_id=info:doi/10.1134/S1063778824010277&rft_dat=%3Cgale_proqu%3EA783708931%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930595657&rft_id=info:pmid/&rft_galeid=A783708931&rfr_iscdi=true