City name recognition for Indian postal automation: Exploring script dependent and independent approach

Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the sam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-03, Vol.83 (8), p.22371-22394
Hauptverfasser: Chatterjee, Somnath, Mukherjee, Himadri, Sen, Shibaprasad, Obaidullah, Sk Md, Roy, Kaushik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22394
container_issue 8
container_start_page 22371
container_title Multimedia tools and applications
container_volume 83
creator Chatterjee, Somnath
Mukherjee, Himadri
Sen, Shibaprasad
Obaidullah, Sk Md
Roy, Kaushik
description Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the same becomes more challenging due to the presence of handwritten documents. In order to develop an autonomous system to solve the problem, a Deep Learning-based system is proposed to recognize handwritten city names written in 6 major scripts namely Tamil, Roman, Devanagari, Bangla, Gurumukhi, and Arabic. Experiments were performed in both script-dependent (bi-stage) and independent approaches. In the bi-stage framework, we have obtained an average accuracy of 97.58 % along with a back-end script recognition rate of 99.07 % while in the script-independent approach, an accuracy of 97.03 % was obtained on a dataset consisting of 807 classes.
doi_str_mv 10.1007/s11042-023-16137-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2930093058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930093058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-b95acc967bfd073ebb3f62d73d1330cdaae7aee07849df6180acd944546efd213</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwHPq5Nkd7PrTUp9QMGLnkM2ydaUNolJCvbfu-sK9uRhmBnmezAfQtcEbgkAv0uEQEkLoKwgNWG8aE7QjFScFZxTcno0n6OLlDYApK5oOUPrhc0H7OTO4GiUXzubrXe49xG_OG2lw8GnLLdY7rPfyfF4j5dfYeujdWucVLQhY22Ccdq4jKXT2LqjPYTopfq4RGe93CZz9dvn6P1x-bZ4LlavTy-Lh1WhKIdcdG0llWpr3vUaODNdx_qaas40YQyUltJwaQzwpmx1X5MGpNJtWVZlbXpNCZujm0l3sP3cm5TFxu-jGywFbRnAUFUzoOiEUtGnFE0vQrQ7GQ-CgBgDFVOgYghU_AQqRhKbSCmMv5v4J_0P6xvrfnr1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930093058</pqid></control><display><type>article</type><title>City name recognition for Indian postal automation: Exploring script dependent and independent approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chatterjee, Somnath ; Mukherjee, Himadri ; Sen, Shibaprasad ; Obaidullah, Sk Md ; Roy, Kaushik</creator><creatorcontrib>Chatterjee, Somnath ; Mukherjee, Himadri ; Sen, Shibaprasad ; Obaidullah, Sk Md ; Roy, Kaushik</creatorcontrib><description>Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the same becomes more challenging due to the presence of handwritten documents. In order to develop an autonomous system to solve the problem, a Deep Learning-based system is proposed to recognize handwritten city names written in 6 major scripts namely Tamil, Roman, Devanagari, Bangla, Gurumukhi, and Arabic. Experiments were performed in both script-dependent (bi-stage) and independent approaches. In the bi-stage framework, we have obtained an average accuracy of 97.58 % along with a back-end script recognition rate of 99.07 % while in the script-independent approach, an accuracy of 97.03 % was obtained on a dataset consisting of 807 classes.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-16137-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Automation ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Deep learning ; Documents ; Electronic commerce ; Engineering ; Handwriting recognition ; Multimedia ; Multimedia Information Systems ; Names ; Neural networks ; Postal sorting ; Scripts ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2024-03, Vol.83 (8), p.22371-22394</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-b95acc967bfd073ebb3f62d73d1330cdaae7aee07849df6180acd944546efd213</cites><orcidid>0000-0002-3360-7576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-16137-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-16137-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chatterjee, Somnath</creatorcontrib><creatorcontrib>Mukherjee, Himadri</creatorcontrib><creatorcontrib>Sen, Shibaprasad</creatorcontrib><creatorcontrib>Obaidullah, Sk Md</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><title>City name recognition for Indian postal automation: Exploring script dependent and independent approach</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the same becomes more challenging due to the presence of handwritten documents. In order to develop an autonomous system to solve the problem, a Deep Learning-based system is proposed to recognize handwritten city names written in 6 major scripts namely Tamil, Roman, Devanagari, Bangla, Gurumukhi, and Arabic. Experiments were performed in both script-dependent (bi-stage) and independent approaches. In the bi-stage framework, we have obtained an average accuracy of 97.58 % along with a back-end script recognition rate of 99.07 % while in the script-independent approach, an accuracy of 97.03 % was obtained on a dataset consisting of 807 classes.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Documents</subject><subject>Electronic commerce</subject><subject>Engineering</subject><subject>Handwriting recognition</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Names</subject><subject>Neural networks</subject><subject>Postal sorting</subject><subject>Scripts</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLAzEQDqJgrf4BTwHPq5Nkd7PrTUp9QMGLnkM2ydaUNolJCvbfu-sK9uRhmBnmezAfQtcEbgkAv0uEQEkLoKwgNWG8aE7QjFScFZxTcno0n6OLlDYApK5oOUPrhc0H7OTO4GiUXzubrXe49xG_OG2lw8GnLLdY7rPfyfF4j5dfYeujdWucVLQhY22Ccdq4jKXT2LqjPYTopfq4RGe93CZz9dvn6P1x-bZ4LlavTy-Lh1WhKIdcdG0llWpr3vUaODNdx_qaas40YQyUltJwaQzwpmx1X5MGpNJtWVZlbXpNCZujm0l3sP3cm5TFxu-jGywFbRnAUFUzoOiEUtGnFE0vQrQ7GQ-CgBgDFVOgYghU_AQqRhKbSCmMv5v4J_0P6xvrfnr1</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Chatterjee, Somnath</creator><creator>Mukherjee, Himadri</creator><creator>Sen, Shibaprasad</creator><creator>Obaidullah, Sk Md</creator><creator>Roy, Kaushik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3360-7576</orcidid></search><sort><creationdate>20240301</creationdate><title>City name recognition for Indian postal automation: Exploring script dependent and independent approach</title><author>Chatterjee, Somnath ; Mukherjee, Himadri ; Sen, Shibaprasad ; Obaidullah, Sk Md ; Roy, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-b95acc967bfd073ebb3f62d73d1330cdaae7aee07849df6180acd944546efd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Documents</topic><topic>Electronic commerce</topic><topic>Engineering</topic><topic>Handwriting recognition</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Names</topic><topic>Neural networks</topic><topic>Postal sorting</topic><topic>Scripts</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Somnath</creatorcontrib><creatorcontrib>Mukherjee, Himadri</creatorcontrib><creatorcontrib>Sen, Shibaprasad</creatorcontrib><creatorcontrib>Obaidullah, Sk Md</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Somnath</au><au>Mukherjee, Himadri</au><au>Sen, Shibaprasad</au><au>Obaidullah, Sk Md</au><au>Roy, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>City name recognition for Indian postal automation: Exploring script dependent and independent approach</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>83</volume><issue>8</issue><spage>22371</spage><epage>22394</epage><pages>22371-22394</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the same becomes more challenging due to the presence of handwritten documents. In order to develop an autonomous system to solve the problem, a Deep Learning-based system is proposed to recognize handwritten city names written in 6 major scripts namely Tamil, Roman, Devanagari, Bangla, Gurumukhi, and Arabic. Experiments were performed in both script-dependent (bi-stage) and independent approaches. In the bi-stage framework, we have obtained an average accuracy of 97.58 % along with a back-end script recognition rate of 99.07 % while in the script-independent approach, an accuracy of 97.03 % was obtained on a dataset consisting of 807 classes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-16137-8</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3360-7576</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2024-03, Vol.83 (8), p.22371-22394
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2930093058
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Automation
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Deep learning
Documents
Electronic commerce
Engineering
Handwriting recognition
Multimedia
Multimedia Information Systems
Names
Neural networks
Postal sorting
Scripts
Special Purpose and Application-Based Systems
title City name recognition for Indian postal automation: Exploring script dependent and independent approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=City%20name%20recognition%20for%20Indian%20postal%20automation:%20Exploring%20script%20dependent%20and%20independent%20approach&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Chatterjee,%20Somnath&rft.date=2024-03-01&rft.volume=83&rft.issue=8&rft.spage=22371&rft.epage=22394&rft.pages=22371-22394&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-16137-8&rft_dat=%3Cproquest_cross%3E2930093058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930093058&rft_id=info:pmid/&rfr_iscdi=true