City name recognition for Indian postal automation: Exploring script dependent and independent approach
Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the sam...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2024-03, Vol.83 (8), p.22371-22394 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22394 |
---|---|
container_issue | 8 |
container_start_page | 22371 |
container_title | Multimedia tools and applications |
container_volume | 83 |
creator | Chatterjee, Somnath Mukherjee, Himadri Sen, Shibaprasad Obaidullah, Sk Md Roy, Kaushik |
description | Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the same becomes more challenging due to the presence of handwritten documents. In order to develop an autonomous system to solve the problem, a Deep Learning-based system is proposed to recognize handwritten city names written in 6 major scripts namely Tamil, Roman, Devanagari, Bangla, Gurumukhi, and Arabic. Experiments were performed in both script-dependent (bi-stage) and independent approaches. In the bi-stage framework, we have obtained an average accuracy of
97.58
%
along with a back-end script recognition rate of
99.07
%
while in the script-independent approach, an accuracy of
97.03
%
was obtained on a dataset consisting of 807 classes. |
doi_str_mv | 10.1007/s11042-023-16137-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2930093058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930093058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-b95acc967bfd073ebb3f62d73d1330cdaae7aee07849df6180acd944546efd213</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgrf4BTwHPq5Nkd7PrTUp9QMGLnkM2ydaUNolJCvbfu-sK9uRhmBnmezAfQtcEbgkAv0uEQEkLoKwgNWG8aE7QjFScFZxTcno0n6OLlDYApK5oOUPrhc0H7OTO4GiUXzubrXe49xG_OG2lw8GnLLdY7rPfyfF4j5dfYeujdWucVLQhY22Ccdq4jKXT2LqjPYTopfq4RGe93CZz9dvn6P1x-bZ4LlavTy-Lh1WhKIdcdG0llWpr3vUaODNdx_qaas40YQyUltJwaQzwpmx1X5MGpNJtWVZlbXpNCZujm0l3sP3cm5TFxu-jGywFbRnAUFUzoOiEUtGnFE0vQrQ7GQ-CgBgDFVOgYghU_AQqRhKbSCmMv5v4J_0P6xvrfnr1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930093058</pqid></control><display><type>article</type><title>City name recognition for Indian postal automation: Exploring script dependent and independent approach</title><source>SpringerLink Journals - AutoHoldings</source><creator>Chatterjee, Somnath ; Mukherjee, Himadri ; Sen, Shibaprasad ; Obaidullah, Sk Md ; Roy, Kaushik</creator><creatorcontrib>Chatterjee, Somnath ; Mukherjee, Himadri ; Sen, Shibaprasad ; Obaidullah, Sk Md ; Roy, Kaushik</creatorcontrib><description>Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the same becomes more challenging due to the presence of handwritten documents. In order to develop an autonomous system to solve the problem, a Deep Learning-based system is proposed to recognize handwritten city names written in 6 major scripts namely Tamil, Roman, Devanagari, Bangla, Gurumukhi, and Arabic. Experiments were performed in both script-dependent (bi-stage) and independent approaches. In the bi-stage framework, we have obtained an average accuracy of
97.58
%
along with a back-end script recognition rate of
99.07
%
while in the script-independent approach, an accuracy of
97.03
%
was obtained on a dataset consisting of 807 classes.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-16137-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Automation ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Deep learning ; Documents ; Electronic commerce ; Engineering ; Handwriting recognition ; Multimedia ; Multimedia Information Systems ; Names ; Neural networks ; Postal sorting ; Scripts ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2024-03, Vol.83 (8), p.22371-22394</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-b95acc967bfd073ebb3f62d73d1330cdaae7aee07849df6180acd944546efd213</cites><orcidid>0000-0002-3360-7576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-16137-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-16137-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chatterjee, Somnath</creatorcontrib><creatorcontrib>Mukherjee, Himadri</creatorcontrib><creatorcontrib>Sen, Shibaprasad</creatorcontrib><creatorcontrib>Obaidullah, Sk Md</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><title>City name recognition for Indian postal automation: Exploring script dependent and independent approach</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the same becomes more challenging due to the presence of handwritten documents. In order to develop an autonomous system to solve the problem, a Deep Learning-based system is proposed to recognize handwritten city names written in 6 major scripts namely Tamil, Roman, Devanagari, Bangla, Gurumukhi, and Arabic. Experiments were performed in both script-dependent (bi-stage) and independent approaches. In the bi-stage framework, we have obtained an average accuracy of
97.58
%
along with a back-end script recognition rate of
99.07
%
while in the script-independent approach, an accuracy of
97.03
%
was obtained on a dataset consisting of 807 classes.</description><subject>Accuracy</subject><subject>Automation</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Documents</subject><subject>Electronic commerce</subject><subject>Engineering</subject><subject>Handwriting recognition</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Names</subject><subject>Neural networks</subject><subject>Postal sorting</subject><subject>Scripts</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLAzEQDqJgrf4BTwHPq5Nkd7PrTUp9QMGLnkM2ydaUNolJCvbfu-sK9uRhmBnmezAfQtcEbgkAv0uEQEkLoKwgNWG8aE7QjFScFZxTcno0n6OLlDYApK5oOUPrhc0H7OTO4GiUXzubrXe49xG_OG2lw8GnLLdY7rPfyfF4j5dfYeujdWucVLQhY22Ccdq4jKXT2LqjPYTopfq4RGe93CZz9dvn6P1x-bZ4LlavTy-Lh1WhKIdcdG0llWpr3vUaODNdx_qaas40YQyUltJwaQzwpmx1X5MGpNJtWVZlbXpNCZujm0l3sP3cm5TFxu-jGywFbRnAUFUzoOiEUtGnFE0vQrQ7GQ-CgBgDFVOgYghU_AQqRhKbSCmMv5v4J_0P6xvrfnr1</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Chatterjee, Somnath</creator><creator>Mukherjee, Himadri</creator><creator>Sen, Shibaprasad</creator><creator>Obaidullah, Sk Md</creator><creator>Roy, Kaushik</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3360-7576</orcidid></search><sort><creationdate>20240301</creationdate><title>City name recognition for Indian postal automation: Exploring script dependent and independent approach</title><author>Chatterjee, Somnath ; Mukherjee, Himadri ; Sen, Shibaprasad ; Obaidullah, Sk Md ; Roy, Kaushik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-b95acc967bfd073ebb3f62d73d1330cdaae7aee07849df6180acd944546efd213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Automation</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Documents</topic><topic>Electronic commerce</topic><topic>Engineering</topic><topic>Handwriting recognition</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Names</topic><topic>Neural networks</topic><topic>Postal sorting</topic><topic>Scripts</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Somnath</creatorcontrib><creatorcontrib>Mukherjee, Himadri</creatorcontrib><creatorcontrib>Sen, Shibaprasad</creatorcontrib><creatorcontrib>Obaidullah, Sk Md</creatorcontrib><creatorcontrib>Roy, Kaushik</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chatterjee, Somnath</au><au>Mukherjee, Himadri</au><au>Sen, Shibaprasad</au><au>Obaidullah, Sk Md</au><au>Roy, Kaushik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>City name recognition for Indian postal automation: Exploring script dependent and independent approach</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>83</volume><issue>8</issue><spage>22371</spage><epage>22394</epage><pages>22371-22394</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Postal documents are often used for official communication, online shopping, etc. At times, the delivery gets delayed due to multiple scripts leading to the need for postal sorting facilities. Understanding the destination city name plays a major part in solving automatic sorting problems as the same becomes more challenging due to the presence of handwritten documents. In order to develop an autonomous system to solve the problem, a Deep Learning-based system is proposed to recognize handwritten city names written in 6 major scripts namely Tamil, Roman, Devanagari, Bangla, Gurumukhi, and Arabic. Experiments were performed in both script-dependent (bi-stage) and independent approaches. In the bi-stage framework, we have obtained an average accuracy of
97.58
%
along with a back-end script recognition rate of
99.07
%
while in the script-independent approach, an accuracy of
97.03
%
was obtained on a dataset consisting of 807 classes.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-16137-8</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-3360-7576</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1573-7721 |
ispartof | Multimedia tools and applications, 2024-03, Vol.83 (8), p.22371-22394 |
issn | 1573-7721 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2930093058 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Automation Computer Communication Networks Computer Science Data Structures and Information Theory Datasets Deep learning Documents Electronic commerce Engineering Handwriting recognition Multimedia Multimedia Information Systems Names Neural networks Postal sorting Scripts Special Purpose and Application-Based Systems |
title | City name recognition for Indian postal automation: Exploring script dependent and independent approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=City%20name%20recognition%20for%20Indian%20postal%20automation:%20Exploring%20script%20dependent%20and%20independent%20approach&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Chatterjee,%20Somnath&rft.date=2024-03-01&rft.volume=83&rft.issue=8&rft.spage=22371&rft.epage=22394&rft.pages=22371-22394&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-16137-8&rft_dat=%3Cproquest_cross%3E2930093058%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930093058&rft_id=info:pmid/&rfr_iscdi=true |