Face super resolution based on attention upsampling and gradient

Face Super-Resolution(SR) is a specific domain SR task, which is to reconstruct low-resolution(LR) face images. Recently, many face super-resolution methods based on deep neural networks have sprung up, yet many methods ignore the gradient information of the face image, which is related closely to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024-03, Vol.83 (8), p.23227-23247
Hauptverfasser: Zheng, Anyi, Zeng, Xiangjin, Song, Pengpeng, Mi, Yong, He, Zhibo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23247
container_issue 8
container_start_page 23227
container_title Multimedia tools and applications
container_volume 83
creator Zheng, Anyi
Zeng, Xiangjin
Song, Pengpeng
Mi, Yong
He, Zhibo
description Face Super-Resolution(SR) is a specific domain SR task, which is to reconstruct low-resolution(LR) face images. Recently, many face super-resolution methods based on deep neural networks have sprung up, yet many methods ignore the gradient information of the face image, which is related closely to the restoration of image detail features. At the same time, many super-resolution methods directly use linear interpolation or pixel shuffle and several convolution layers to up-sample the feature maps, caussing some irrelevant pixels will make subsequent detail reconstruction difficult. Considering these issues, in this paper, we propose a face super-resolution method guided by the gradient structure. In particular, we designed a sub-network to generate gradient information from low-resolution images and up-sample the gradient as additional information for the entire network. Unlike other methods based on prior information, such as facial landmarks, facial parsing, face alignment, the gradient information is generated from low-resolution images. At the same time, relying on pixel shuffle, we also designed a novel upsampling module based on channel attention and pixel attention. The results of the experiment show that our network can achieve the sota on several public datasets on PSNR, SSIM, and VIF. The visual result also proves the feasibility and advancement of our network in restoring the detailed structure.
doi_str_mv 10.1007/s11042-023-15502-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2930092199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930092199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b9d280e763918ce2f78baee696da8a3458952eadb5e9bacaf69d88532b5f30df3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FJsmmTm7K4Kix40XOYNtOly25bkxbWf2_cCnryNI-Z997Ax9i1gFsBUNxFIWAhOUjFhdYg-eGEzYQuFC8KKU7_6HN2EeMWQORaLmbsfoUVZXHsKWSBYrcbh6ZrsxIj-SwJHAZqj6uxj7jvd027ybD12Sagb9Lpkp3VuIt09TPn7H31-LZ85uvXp5flw5pXStiBl9ZLA1TkygpTkawLUyJRbnOPBtVCG6sloS812RIrrHPrjdFKlrpW4Gs1ZzdTbx-6j5Hi4LbdGNr00kmrAKwU1iaXnFxV6GIMVLs-NHsMn06A-yblJlIukXJHUu6QQmoKxWRuNxR-q_9JfQEJNWzI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930092199</pqid></control><display><type>article</type><title>Face super resolution based on attention upsampling and gradient</title><source>SpringerLink Journals</source><creator>Zheng, Anyi ; Zeng, Xiangjin ; Song, Pengpeng ; Mi, Yong ; He, Zhibo</creator><creatorcontrib>Zheng, Anyi ; Zeng, Xiangjin ; Song, Pengpeng ; Mi, Yong ; He, Zhibo</creatorcontrib><description>Face Super-Resolution(SR) is a specific domain SR task, which is to reconstruct low-resolution(LR) face images. Recently, many face super-resolution methods based on deep neural networks have sprung up, yet many methods ignore the gradient information of the face image, which is related closely to the restoration of image detail features. At the same time, many super-resolution methods directly use linear interpolation or pixel shuffle and several convolution layers to up-sample the feature maps, caussing some irrelevant pixels will make subsequent detail reconstruction difficult. Considering these issues, in this paper, we propose a face super-resolution method guided by the gradient structure. In particular, we designed a sub-network to generate gradient information from low-resolution images and up-sample the gradient as additional information for the entire network. Unlike other methods based on prior information, such as facial landmarks, facial parsing, face alignment, the gradient information is generated from low-resolution images. At the same time, relying on pixel shuffle, we also designed a novel upsampling module based on channel attention and pixel attention. The results of the experiment show that our network can achieve the sota on several public datasets on PSNR, SSIM, and VIF. The visual result also proves the feasibility and advancement of our network in restoring the detailed structure.</description><identifier>ISSN: 1573-7721</identifier><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-15502-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Deep learning ; Feature maps ; Image reconstruction ; Image resolution ; Interpolation ; Methods ; Multimedia ; Multimedia Information Systems ; Neural networks ; Pixels ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2024-03, Vol.83 (8), p.23227-23247</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b9d280e763918ce2f78baee696da8a3458952eadb5e9bacaf69d88532b5f30df3</citedby><cites>FETCH-LOGICAL-c319t-b9d280e763918ce2f78baee696da8a3458952eadb5e9bacaf69d88532b5f30df3</cites><orcidid>0000-0003-1931-0167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-15502-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-15502-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zheng, Anyi</creatorcontrib><creatorcontrib>Zeng, Xiangjin</creatorcontrib><creatorcontrib>Song, Pengpeng</creatorcontrib><creatorcontrib>Mi, Yong</creatorcontrib><creatorcontrib>He, Zhibo</creatorcontrib><title>Face super resolution based on attention upsampling and gradient</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Face Super-Resolution(SR) is a specific domain SR task, which is to reconstruct low-resolution(LR) face images. Recently, many face super-resolution methods based on deep neural networks have sprung up, yet many methods ignore the gradient information of the face image, which is related closely to the restoration of image detail features. At the same time, many super-resolution methods directly use linear interpolation or pixel shuffle and several convolution layers to up-sample the feature maps, caussing some irrelevant pixels will make subsequent detail reconstruction difficult. Considering these issues, in this paper, we propose a face super-resolution method guided by the gradient structure. In particular, we designed a sub-network to generate gradient information from low-resolution images and up-sample the gradient as additional information for the entire network. Unlike other methods based on prior information, such as facial landmarks, facial parsing, face alignment, the gradient information is generated from low-resolution images. At the same time, relying on pixel shuffle, we also designed a novel upsampling module based on channel attention and pixel attention. The results of the experiment show that our network can achieve the sota on several public datasets on PSNR, SSIM, and VIF. The visual result also proves the feasibility and advancement of our network in restoring the detailed structure.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Deep learning</subject><subject>Feature maps</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Interpolation</subject><subject>Methods</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1573-7721</issn><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9FJsmmTm7K4Kix40XOYNtOly25bkxbWf2_cCnryNI-Z997Ax9i1gFsBUNxFIWAhOUjFhdYg-eGEzYQuFC8KKU7_6HN2EeMWQORaLmbsfoUVZXHsKWSBYrcbh6ZrsxIj-SwJHAZqj6uxj7jvd027ybD12Sagb9Lpkp3VuIt09TPn7H31-LZ85uvXp5flw5pXStiBl9ZLA1TkygpTkawLUyJRbnOPBtVCG6sloS812RIrrHPrjdFKlrpW4Gs1ZzdTbx-6j5Hi4LbdGNr00kmrAKwU1iaXnFxV6GIMVLs-NHsMn06A-yblJlIukXJHUu6QQmoKxWRuNxR-q_9JfQEJNWzI</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Zheng, Anyi</creator><creator>Zeng, Xiangjin</creator><creator>Song, Pengpeng</creator><creator>Mi, Yong</creator><creator>He, Zhibo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1931-0167</orcidid></search><sort><creationdate>20240301</creationdate><title>Face super resolution based on attention upsampling and gradient</title><author>Zheng, Anyi ; Zeng, Xiangjin ; Song, Pengpeng ; Mi, Yong ; He, Zhibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b9d280e763918ce2f78baee696da8a3458952eadb5e9bacaf69d88532b5f30df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Deep learning</topic><topic>Feature maps</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Interpolation</topic><topic>Methods</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Anyi</creatorcontrib><creatorcontrib>Zeng, Xiangjin</creatorcontrib><creatorcontrib>Song, Pengpeng</creatorcontrib><creatorcontrib>Mi, Yong</creatorcontrib><creatorcontrib>He, Zhibo</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Anyi</au><au>Zeng, Xiangjin</au><au>Song, Pengpeng</au><au>Mi, Yong</au><au>He, Zhibo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Face super resolution based on attention upsampling and gradient</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>83</volume><issue>8</issue><spage>23227</spage><epage>23247</epage><pages>23227-23247</pages><issn>1573-7721</issn><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Face Super-Resolution(SR) is a specific domain SR task, which is to reconstruct low-resolution(LR) face images. Recently, many face super-resolution methods based on deep neural networks have sprung up, yet many methods ignore the gradient information of the face image, which is related closely to the restoration of image detail features. At the same time, many super-resolution methods directly use linear interpolation or pixel shuffle and several convolution layers to up-sample the feature maps, caussing some irrelevant pixels will make subsequent detail reconstruction difficult. Considering these issues, in this paper, we propose a face super-resolution method guided by the gradient structure. In particular, we designed a sub-network to generate gradient information from low-resolution images and up-sample the gradient as additional information for the entire network. Unlike other methods based on prior information, such as facial landmarks, facial parsing, face alignment, the gradient information is generated from low-resolution images. At the same time, relying on pixel shuffle, we also designed a novel upsampling module based on channel attention and pixel attention. The results of the experiment show that our network can achieve the sota on several public datasets on PSNR, SSIM, and VIF. The visual result also proves the feasibility and advancement of our network in restoring the detailed structure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-15502-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1931-0167</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1573-7721
ispartof Multimedia tools and applications, 2024-03, Vol.83 (8), p.23227-23247
issn 1573-7721
1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2930092199
source SpringerLink Journals
subjects Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Feature maps
Image reconstruction
Image resolution
Interpolation
Methods
Multimedia
Multimedia Information Systems
Neural networks
Pixels
Special Purpose and Application-Based Systems
title Face super resolution based on attention upsampling and gradient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Face%20super%20resolution%20based%20on%20attention%20upsampling%20and%20gradient&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Zheng,%20Anyi&rft.date=2024-03-01&rft.volume=83&rft.issue=8&rft.spage=23227&rft.epage=23247&rft.pages=23227-23247&rft.issn=1573-7721&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-15502-x&rft_dat=%3Cproquest_cross%3E2930092199%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930092199&rft_id=info:pmid/&rfr_iscdi=true