Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought
Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks, thereby piquing the research community's curiosity for exploring their potential in emotional intelligence. However, several issues in the field of emotional generation tasks remain unresolved,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Li, Zaijing Chen, Gongwei Shao, Rui Xie, Yuquan Jiang, Dongmei Nie, Liqiang |
description | Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks, thereby piquing the research community's curiosity for exploring their potential in emotional intelligence. However, several issues in the field of emotional generation tasks remain unresolved, including human preference alignment and emotional generation assessment. In this paper, we propose the Emotional Chain-of-Thought (ECoT), a plug-and-play prompting method that enhances the performance of LLMs on various emotional generation tasks by aligning with human emotional intelligence guidelines. To assess the reliability of ECoT, we propose an automated model-based evaluation method called Emotional Generation Score (EGS). EGS incorporates Goleman's Emotional Intelligence Theory as a consensus of human experts, providing a new perspective on the evaluation of emotional generation tasks. Extensive experimental results demonstrate the effectiveness of ECoT and EGS. Further, we discuss the promise of LLMs in the field of emotional intelligence and present key insights into the LLMs with the ECoT in emotional generation tasks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2930092037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930092037</sourcerecordid><originalsourceid>FETCH-proquest_journals_29300920373</originalsourceid><addsrcrecordid>eNqNi70KwjAYRYMgWLTvEHAOxMRaO5eqg27d5VPTJCUmNT-Cb28FB0eXe--BeyYoY5yvyHbN2AzlIfSUUrYpWVHwDEFjFdirthI3dxe1s2DwXljh4QO4hgEu2uj4wq7DR_BSjGllgnGc3E2YgJ8afuRagbbEdaRVLkkVF2jagQki__YcLXdNWx_I4N0jiRDPvUt-NMOZVZzSilFe8v9ebwpMRNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930092037</pqid></control><display><type>article</type><title>Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought</title><source>Free E- Journals</source><creator>Li, Zaijing ; Chen, Gongwei ; Shao, Rui ; Xie, Yuquan ; Jiang, Dongmei ; Nie, Liqiang</creator><creatorcontrib>Li, Zaijing ; Chen, Gongwei ; Shao, Rui ; Xie, Yuquan ; Jiang, Dongmei ; Nie, Liqiang</creatorcontrib><description>Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks, thereby piquing the research community's curiosity for exploring their potential in emotional intelligence. However, several issues in the field of emotional generation tasks remain unresolved, including human preference alignment and emotional generation assessment. In this paper, we propose the Emotional Chain-of-Thought (ECoT), a plug-and-play prompting method that enhances the performance of LLMs on various emotional generation tasks by aligning with human emotional intelligence guidelines. To assess the reliability of ECoT, we propose an automated model-based evaluation method called Emotional Generation Score (EGS). EGS incorporates Goleman's Emotional Intelligence Theory as a consensus of human experts, providing a new perspective on the evaluation of emotional generation tasks. Extensive experimental results demonstrate the effectiveness of ECoT and EGS. Further, we discuss the promise of LLMs in the field of emotional intelligence and present key insights into the LLMs with the ECoT in emotional generation tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Emotion recognition ; Emotional intelligence ; Large language models ; Reliability analysis</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Li, Zaijing</creatorcontrib><creatorcontrib>Chen, Gongwei</creatorcontrib><creatorcontrib>Shao, Rui</creatorcontrib><creatorcontrib>Xie, Yuquan</creatorcontrib><creatorcontrib>Jiang, Dongmei</creatorcontrib><creatorcontrib>Nie, Liqiang</creatorcontrib><title>Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought</title><title>arXiv.org</title><description>Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks, thereby piquing the research community's curiosity for exploring their potential in emotional intelligence. However, several issues in the field of emotional generation tasks remain unresolved, including human preference alignment and emotional generation assessment. In this paper, we propose the Emotional Chain-of-Thought (ECoT), a plug-and-play prompting method that enhances the performance of LLMs on various emotional generation tasks by aligning with human emotional intelligence guidelines. To assess the reliability of ECoT, we propose an automated model-based evaluation method called Emotional Generation Score (EGS). EGS incorporates Goleman's Emotional Intelligence Theory as a consensus of human experts, providing a new perspective on the evaluation of emotional generation tasks. Extensive experimental results demonstrate the effectiveness of ECoT and EGS. Further, we discuss the promise of LLMs in the field of emotional intelligence and present key insights into the LLMs with the ECoT in emotional generation tasks.</description><subject>Emotion recognition</subject><subject>Emotional intelligence</subject><subject>Large language models</subject><subject>Reliability analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi70KwjAYRYMgWLTvEHAOxMRaO5eqg27d5VPTJCUmNT-Cb28FB0eXe--BeyYoY5yvyHbN2AzlIfSUUrYpWVHwDEFjFdirthI3dxe1s2DwXljh4QO4hgEu2uj4wq7DR_BSjGllgnGc3E2YgJ8afuRagbbEdaRVLkkVF2jagQki__YcLXdNWx_I4N0jiRDPvUt-NMOZVZzSilFe8v9ebwpMRNI</recordid><startdate>20240807</startdate><enddate>20240807</enddate><creator>Li, Zaijing</creator><creator>Chen, Gongwei</creator><creator>Shao, Rui</creator><creator>Xie, Yuquan</creator><creator>Jiang, Dongmei</creator><creator>Nie, Liqiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240807</creationdate><title>Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought</title><author>Li, Zaijing ; Chen, Gongwei ; Shao, Rui ; Xie, Yuquan ; Jiang, Dongmei ; Nie, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29300920373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Emotion recognition</topic><topic>Emotional intelligence</topic><topic>Large language models</topic><topic>Reliability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Zaijing</creatorcontrib><creatorcontrib>Chen, Gongwei</creatorcontrib><creatorcontrib>Shao, Rui</creatorcontrib><creatorcontrib>Xie, Yuquan</creatorcontrib><creatorcontrib>Jiang, Dongmei</creatorcontrib><creatorcontrib>Nie, Liqiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zaijing</au><au>Chen, Gongwei</au><au>Shao, Rui</au><au>Xie, Yuquan</au><au>Jiang, Dongmei</au><au>Nie, Liqiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought</atitle><jtitle>arXiv.org</jtitle><date>2024-08-07</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Large Language Models (LLMs) have shown remarkable performance in various emotion recognition tasks, thereby piquing the research community's curiosity for exploring their potential in emotional intelligence. However, several issues in the field of emotional generation tasks remain unresolved, including human preference alignment and emotional generation assessment. In this paper, we propose the Emotional Chain-of-Thought (ECoT), a plug-and-play prompting method that enhances the performance of LLMs on various emotional generation tasks by aligning with human emotional intelligence guidelines. To assess the reliability of ECoT, we propose an automated model-based evaluation method called Emotional Generation Score (EGS). EGS incorporates Goleman's Emotional Intelligence Theory as a consensus of human experts, providing a new perspective on the evaluation of emotional generation tasks. Extensive experimental results demonstrate the effectiveness of ECoT and EGS. Further, we discuss the promise of LLMs in the field of emotional intelligence and present key insights into the LLMs with the ECoT in emotional generation tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2930092037 |
source | Free E- Journals |
subjects | Emotion recognition Emotional intelligence Large language models Reliability analysis |
title | Enhancing Emotional Generation Capability of Large Language Models via Emotional Chain-of-Thought |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T21%3A38%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Enhancing%20Emotional%20Generation%20Capability%20of%20Large%20Language%20Models%20via%20Emotional%20Chain-of-Thought&rft.jtitle=arXiv.org&rft.au=Li,%20Zaijing&rft.date=2024-08-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2930092037%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930092037&rft_id=info:pmid/&rfr_iscdi=true |