How Small Can Faithful Sets Be? Ordering Topological Descriptors

Recent developments in shape reconstruction and comparison call for the use of many different (topological) descriptor types, such as persistence diagrams and Euler characteristic functions. We establish a framework to quantitatively compare the strength of different descriptor types, setting up a t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Fasy, Brittany Terese, Millman, David L, Schenfisch, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fasy, Brittany Terese
Millman, David L
Schenfisch, Anna
description Recent developments in shape reconstruction and comparison call for the use of many different (topological) descriptor types, such as persistence diagrams and Euler characteristic functions. We establish a framework to quantitatively compare the strength of different descriptor types, setting up a theory that allows for future comparisons and analysis of descriptor types and that can inform choices made in applications. We use this framework to partially order a set of six common descriptor types. We then give lower bounds on the size of sets of descriptors that uniquely correspond to simplicial complexes, giving insight into the advantages of using verbose rather than concise topological descriptors.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2930077886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2930077886</sourcerecordid><originalsourceid>FETCH-proquest_journals_29300778863</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivMNNnElqKz9OGlHC5gA7abBgSeVib4mvr4MP4HSG7yxYIKTcRdleiBULiQbOuUhSEccyYKcS31A9lbWQqxEKZfyjmy1U2hOc9RFu7q6dGXuocUKLvWmVhYum1pnJo6MNW3bKkg5_XbNtca3zMpocvmZNvhlwduOXGnGQnKdpliXyv-sDxGE4Yw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930077886</pqid></control><display><type>article</type><title>How Small Can Faithful Sets Be? Ordering Topological Descriptors</title><source>Free E- Journals</source><creator>Fasy, Brittany Terese ; Millman, David L ; Schenfisch, Anna</creator><creatorcontrib>Fasy, Brittany Terese ; Millman, David L ; Schenfisch, Anna</creatorcontrib><description>Recent developments in shape reconstruction and comparison call for the use of many different (topological) descriptor types, such as persistence diagrams and Euler characteristic functions. We establish a framework to quantitatively compare the strength of different descriptor types, setting up a theory that allows for future comparisons and analysis of descriptor types and that can inform choices made in applications. We use this framework to partially order a set of six common descriptor types. We then give lower bounds on the size of sets of descriptors that uniquely correspond to simplicial complexes, giving insight into the advantages of using verbose rather than concise topological descriptors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Characteristic functions ; Lower bounds ; Set theory ; Topology</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Fasy, Brittany Terese</creatorcontrib><creatorcontrib>Millman, David L</creatorcontrib><creatorcontrib>Schenfisch, Anna</creatorcontrib><title>How Small Can Faithful Sets Be? Ordering Topological Descriptors</title><title>arXiv.org</title><description>Recent developments in shape reconstruction and comparison call for the use of many different (topological) descriptor types, such as persistence diagrams and Euler characteristic functions. We establish a framework to quantitatively compare the strength of different descriptor types, setting up a theory that allows for future comparisons and analysis of descriptor types and that can inform choices made in applications. We use this framework to partially order a set of six common descriptor types. We then give lower bounds on the size of sets of descriptors that uniquely correspond to simplicial complexes, giving insight into the advantages of using verbose rather than concise topological descriptors.</description><subject>Characteristic functions</subject><subject>Lower bounds</subject><subject>Set theory</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0OgjAUQOHGxESivMNNnElqKz9OGlHC5gA7abBgSeVib4mvr4MP4HSG7yxYIKTcRdleiBULiQbOuUhSEccyYKcS31A9lbWQqxEKZfyjmy1U2hOc9RFu7q6dGXuocUKLvWmVhYum1pnJo6MNW3bKkg5_XbNtca3zMpocvmZNvhlwduOXGnGQnKdpliXyv-sDxGE4Yw</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Fasy, Brittany Terese</creator><creator>Millman, David L</creator><creator>Schenfisch, Anna</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240708</creationdate><title>How Small Can Faithful Sets Be? Ordering Topological Descriptors</title><author>Fasy, Brittany Terese ; Millman, David L ; Schenfisch, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29300778863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characteristic functions</topic><topic>Lower bounds</topic><topic>Set theory</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Fasy, Brittany Terese</creatorcontrib><creatorcontrib>Millman, David L</creatorcontrib><creatorcontrib>Schenfisch, Anna</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fasy, Brittany Terese</au><au>Millman, David L</au><au>Schenfisch, Anna</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>How Small Can Faithful Sets Be? Ordering Topological Descriptors</atitle><jtitle>arXiv.org</jtitle><date>2024-07-08</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Recent developments in shape reconstruction and comparison call for the use of many different (topological) descriptor types, such as persistence diagrams and Euler characteristic functions. We establish a framework to quantitatively compare the strength of different descriptor types, setting up a theory that allows for future comparisons and analysis of descriptor types and that can inform choices made in applications. We use this framework to partially order a set of six common descriptor types. We then give lower bounds on the size of sets of descriptors that uniquely correspond to simplicial complexes, giving insight into the advantages of using verbose rather than concise topological descriptors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2930077886
source Free E- Journals
subjects Characteristic functions
Lower bounds
Set theory
Topology
title How Small Can Faithful Sets Be? Ordering Topological Descriptors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T13%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=How%20Small%20Can%20Faithful%20Sets%20Be?%20Ordering%20Topological%20Descriptors&rft.jtitle=arXiv.org&rft.au=Fasy,%20Brittany%20Terese&rft.date=2024-07-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2930077886%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2930077886&rft_id=info:pmid/&rfr_iscdi=true