Fuzzy adaptive tuning control of power system based on moth-flame optimization algorithm

Since low-frequency oscillation seriously threatens the safe operation of the power system, the power system stabilizer (PSS) can effectively suppress the oscillation. In this paper, a hybrid parameter optimization method combining the moth-flame optimization (MFO) algorithm and fuzzy logic controll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2024-02, Vol.46 (3), p.513-523
Hauptverfasser: Gao, Hongliang, Li, Jun, Xiong, Lang, Zhang, Hongcong, Ma, Shuangbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 3
container_start_page 513
container_title Transactions of the Institute of Measurement and Control
container_volume 46
creator Gao, Hongliang
Li, Jun
Xiong, Lang
Zhang, Hongcong
Ma, Shuangbao
description Since low-frequency oscillation seriously threatens the safe operation of the power system, the power system stabilizer (PSS) can effectively suppress the oscillation. In this paper, a hybrid parameter optimization method combining the moth-flame optimization (MFO) algorithm and fuzzy logic controller (FLC) is proposed to address the problem of poor adaptability of the parameter tuning method in the conventional power system stabilizer (CPSS). This method can optimize the parameters of PSS in different processes. Initially, the optimal parameters of PSS under the current perturbation are given by the MFO algorithm. During the online operation of the system, as perturbation changes, the parameters of the PSS will also be adaptively tuned by the FLC in real-time when the system operating conditions change. According to this method, a fuzzy adaptive proportional–integral–differential (FPID) controller is designed based on the moth-flame optimization algorithm (MFO-FPID), and it is used as PSS to improve dynamic stability performance during oscillation. Moreover, its parameters can be adaptively adjusted in different perturbation scenarios. The designed MFO-FPID controller is applied to the single machine infinite bus (SMIB) power system to compare the dynamic performance with other controllers, that is, proportional–integral–differential (PID) and CPSS. The result shows that the MFO-FPID controller can suppress the oscillation very well, and the control effect is the best.
doi_str_mv 10.1177/01423312231174545
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2929418682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312231174545</sage_id><sourcerecordid>2929418682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-bba568b2e05a2f1e30932d0389d72d4c6d42b37cd390ed137e3b434786d9c9ac3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Bz9UkkybNURZXhQUvCt5KmqS7XdqmJqmy--vtsoIH8TTMzPveg4fQNSW3lEp5RyhnAJQxmFae8_wEzSiXMiMg1CmaHf7ZQXCOLmLcEkI4F3yG3pfjfr_D2uohNZ8Op7Fv-jU2vk_Bt9jXePBfLuC4i8l1uNLRWex73Pm0yepWdw77ieyavU7NdNft2ocmbbpLdFbrNrqrnzlHb8uH18VTtnp5fF7crzLDBE9ZVelcFBVzJNespg6IAmYJFMpKZrkRlrMKpLGgiLMUpIOKA5eFsMoobWCObo6-Q_Afo4up3Pox9FNkyRRTnBaiYJOKHlUm-BiDq8shNJ0Ou5KS8lBg-afAibk9MlGv3a_r_8A3omJwnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929418682</pqid></control><display><type>article</type><title>Fuzzy adaptive tuning control of power system based on moth-flame optimization algorithm</title><source>SAGE Complete</source><creator>Gao, Hongliang ; Li, Jun ; Xiong, Lang ; Zhang, Hongcong ; Ma, Shuangbao</creator><creatorcontrib>Gao, Hongliang ; Li, Jun ; Xiong, Lang ; Zhang, Hongcong ; Ma, Shuangbao</creatorcontrib><description>Since low-frequency oscillation seriously threatens the safe operation of the power system, the power system stabilizer (PSS) can effectively suppress the oscillation. In this paper, a hybrid parameter optimization method combining the moth-flame optimization (MFO) algorithm and fuzzy logic controller (FLC) is proposed to address the problem of poor adaptability of the parameter tuning method in the conventional power system stabilizer (CPSS). This method can optimize the parameters of PSS in different processes. Initially, the optimal parameters of PSS under the current perturbation are given by the MFO algorithm. During the online operation of the system, as perturbation changes, the parameters of the PSS will also be adaptively tuned by the FLC in real-time when the system operating conditions change. According to this method, a fuzzy adaptive proportional–integral–differential (FPID) controller is designed based on the moth-flame optimization algorithm (MFO-FPID), and it is used as PSS to improve dynamic stability performance during oscillation. Moreover, its parameters can be adaptively adjusted in different perturbation scenarios. The designed MFO-FPID controller is applied to the single machine infinite bus (SMIB) power system to compare the dynamic performance with other controllers, that is, proportional–integral–differential (PID) and CPSS. The result shows that the MFO-FPID controller can suppress the oscillation very well, and the control effect is the best.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312231174545</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive control ; Algorithms ; Control systems design ; Controllers ; Dynamic stability ; Fuzzy control ; Fuzzy logic ; Optimization ; Optimization algorithms ; Parameters ; Perturbation ; Tuning</subject><ispartof>Transactions of the Institute of Measurement and Control, 2024-02, Vol.46 (3), p.513-523</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-bba568b2e05a2f1e30932d0389d72d4c6d42b37cd390ed137e3b434786d9c9ac3</cites><orcidid>0000-0002-7088-3369 ; 0000-0003-2811-1039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312231174545$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312231174545$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Gao, Hongliang</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Xiong, Lang</creatorcontrib><creatorcontrib>Zhang, Hongcong</creatorcontrib><creatorcontrib>Ma, Shuangbao</creatorcontrib><title>Fuzzy adaptive tuning control of power system based on moth-flame optimization algorithm</title><title>Transactions of the Institute of Measurement and Control</title><description>Since low-frequency oscillation seriously threatens the safe operation of the power system, the power system stabilizer (PSS) can effectively suppress the oscillation. In this paper, a hybrid parameter optimization method combining the moth-flame optimization (MFO) algorithm and fuzzy logic controller (FLC) is proposed to address the problem of poor adaptability of the parameter tuning method in the conventional power system stabilizer (CPSS). This method can optimize the parameters of PSS in different processes. Initially, the optimal parameters of PSS under the current perturbation are given by the MFO algorithm. During the online operation of the system, as perturbation changes, the parameters of the PSS will also be adaptively tuned by the FLC in real-time when the system operating conditions change. According to this method, a fuzzy adaptive proportional–integral–differential (FPID) controller is designed based on the moth-flame optimization algorithm (MFO-FPID), and it is used as PSS to improve dynamic stability performance during oscillation. Moreover, its parameters can be adaptively adjusted in different perturbation scenarios. The designed MFO-FPID controller is applied to the single machine infinite bus (SMIB) power system to compare the dynamic performance with other controllers, that is, proportional–integral–differential (PID) and CPSS. The result shows that the MFO-FPID controller can suppress the oscillation very well, and the control effect is the best.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Dynamic stability</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Perturbation</subject><subject>Tuning</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Bz9UkkybNURZXhQUvCt5KmqS7XdqmJqmy--vtsoIH8TTMzPveg4fQNSW3lEp5RyhnAJQxmFae8_wEzSiXMiMg1CmaHf7ZQXCOLmLcEkI4F3yG3pfjfr_D2uohNZ8Op7Fv-jU2vk_Bt9jXePBfLuC4i8l1uNLRWex73Pm0yepWdw77ieyavU7NdNft2ocmbbpLdFbrNrqrnzlHb8uH18VTtnp5fF7crzLDBE9ZVelcFBVzJNespg6IAmYJFMpKZrkRlrMKpLGgiLMUpIOKA5eFsMoobWCObo6-Q_Afo4up3Pox9FNkyRRTnBaiYJOKHlUm-BiDq8shNJ0Ou5KS8lBg-afAibk9MlGv3a_r_8A3omJwnA</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Gao, Hongliang</creator><creator>Li, Jun</creator><creator>Xiong, Lang</creator><creator>Zhang, Hongcong</creator><creator>Ma, Shuangbao</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7088-3369</orcidid><orcidid>https://orcid.org/0000-0003-2811-1039</orcidid></search><sort><creationdate>202402</creationdate><title>Fuzzy adaptive tuning control of power system based on moth-flame optimization algorithm</title><author>Gao, Hongliang ; Li, Jun ; Xiong, Lang ; Zhang, Hongcong ; Ma, Shuangbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-bba568b2e05a2f1e30932d0389d72d4c6d42b37cd390ed137e3b434786d9c9ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Dynamic stability</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Perturbation</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Hongliang</creatorcontrib><creatorcontrib>Li, Jun</creatorcontrib><creatorcontrib>Xiong, Lang</creatorcontrib><creatorcontrib>Zhang, Hongcong</creatorcontrib><creatorcontrib>Ma, Shuangbao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Hongliang</au><au>Li, Jun</au><au>Xiong, Lang</au><au>Zhang, Hongcong</au><au>Ma, Shuangbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy adaptive tuning control of power system based on moth-flame optimization algorithm</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2024-02</date><risdate>2024</risdate><volume>46</volume><issue>3</issue><spage>513</spage><epage>523</epage><pages>513-523</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>Since low-frequency oscillation seriously threatens the safe operation of the power system, the power system stabilizer (PSS) can effectively suppress the oscillation. In this paper, a hybrid parameter optimization method combining the moth-flame optimization (MFO) algorithm and fuzzy logic controller (FLC) is proposed to address the problem of poor adaptability of the parameter tuning method in the conventional power system stabilizer (CPSS). This method can optimize the parameters of PSS in different processes. Initially, the optimal parameters of PSS under the current perturbation are given by the MFO algorithm. During the online operation of the system, as perturbation changes, the parameters of the PSS will also be adaptively tuned by the FLC in real-time when the system operating conditions change. According to this method, a fuzzy adaptive proportional–integral–differential (FPID) controller is designed based on the moth-flame optimization algorithm (MFO-FPID), and it is used as PSS to improve dynamic stability performance during oscillation. Moreover, its parameters can be adaptively adjusted in different perturbation scenarios. The designed MFO-FPID controller is applied to the single machine infinite bus (SMIB) power system to compare the dynamic performance with other controllers, that is, proportional–integral–differential (PID) and CPSS. The result shows that the MFO-FPID controller can suppress the oscillation very well, and the control effect is the best.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312231174545</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7088-3369</orcidid><orcidid>https://orcid.org/0000-0003-2811-1039</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2024-02, Vol.46 (3), p.513-523
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2929418682
source SAGE Complete
subjects Adaptive control
Algorithms
Control systems design
Controllers
Dynamic stability
Fuzzy control
Fuzzy logic
Optimization
Optimization algorithms
Parameters
Perturbation
Tuning
title Fuzzy adaptive tuning control of power system based on moth-flame optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A19%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20adaptive%20tuning%20control%20of%20power%20system%20based%20on%20moth-flame%20optimization%20algorithm&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Gao,%20Hongliang&rft.date=2024-02&rft.volume=46&rft.issue=3&rft.spage=513&rft.epage=523&rft.pages=513-523&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312231174545&rft_dat=%3Cproquest_cross%3E2929418682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929418682&rft_id=info:pmid/&rft_sage_id=10.1177_01423312231174545&rfr_iscdi=true