Tunable Dielectric Spectroscopy of PVDF Thin Films Crossbred with TiO2 Nanoparticles for the Storage Devices

Polyvinylidenefluoride (PVDF) is a semi‐crystalline ferroelectric polymer with a wide range of interesting properties and shows potentiality in a variety of technological applications. Flexible thin films of PVDF nanocomposites (NCs) have attracted many researchers due to their tunable electronic pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular symposia. 2024-02, Vol.413 (1), p.n/a
Hauptverfasser: Ayub H, Arshad, Dani, Santhoshkumar, Khanam, Bibi Raza, Manohara, Shambonahalli Rajanna, Khadke, U. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Macromolecular symposia.
container_volume 413
creator Ayub H, Arshad
Dani, Santhoshkumar
Khanam, Bibi Raza
Manohara, Shambonahalli Rajanna
Khadke, U. V.
description Polyvinylidenefluoride (PVDF) is a semi‐crystalline ferroelectric polymer with a wide range of interesting properties and shows potentiality in a variety of technological applications. Flexible thin films of PVDF nanocomposites (NCs) have attracted many researchers due to their tunable electronic properties. This paper reports the synthesis, characterization, and dielectric studies of PVDF‐TiO2 NC thin films. The synthesized films are self‐supporting thin and the average thickness of the thin films is 60 µm measured using a Digital thickness gauge of resolution 0.01 mm. TiO2 nanoparticles are prepared using the combustion method. Commercially available PVDF granules are used to develop PVDF‐TiO2 NC thin films using the film casting technique. The structural study of the prepared thin films is carried out using XRD that confirms the retention of the β‐phase of PVDF. The functional group and bonding nature have been studied using FTIR Spectroscopy. The thermal stability of the NC thin films is studied using TGA. The variation of dielectric constant (DC), dielectric loss (DL), AC conductivity, and dissipation factor of the medium of pristine PVDF and PVDF‐TiO2 NC thin films are studied in the frequency range of 10 Hz to 8 MHz at ambient temperature. The dielectric constant of PVDF‐TiO2 NC thin films increases up to 8 wt% and anomaly for 10 wt% of TiO2 fillers in the PVDF matrix at a lower frequency and found to decrease with increasing frequency. The dielectric loss of NC thin films is high at a lower frequency and decreases with an increase in the frequency that is in good agreement with the Maxwell–Wagner type of interfacial polarization. At lower frequencies, the dielectric constant of PVDF‐TiO2 NC increases with the increase in filler content. AC conductivity shows a sharp increase at higher frequencies whereas the dissipation factor of the polymer NCs remains unaltered with respect to frequency by maintaining the trend. This suggests that PVDF‐TiO2 NC is potential material for energy storage devices.
doi_str_mv 10.1002/masy.202300029
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2929298350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929298350</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1489-2a268d50515a520dbe00d94b715fb6cb03291b051daa742f25da1bafb41d7ef3</originalsourceid><addsrcrecordid>eNo9UFFLwzAYDKLgnL76HPC580varMvj2JwK0wkrgk8haVOX0TU1aR3996ZMxvfw3XHHHRxC9wQmBIA-HqTvJxRoDIHxCzQijJIo5gCXAQOlEYmncI1uvN8HC-cpGaEq62qpKo2XRlc6b53J8bYZgPW5bXpsS_zxuVzhbGdqvDLVweNF0LxyusBH0-5wZjYUv8vaNtK1Jq-0x6V1uN1pvG2tk98hXP-aXPtbdFXKyuu7_z9G2eopW7xE683z62K-jhqSzHhEJZ3OCgaMMMkoFEoDFDxRKWGlmuYKYsqJCnIhZZrQkrJCEiVLlZAi1WU8Rg-n2MbZn077Vuxt5-rQKCgfbhYzCC5-ch1NpXvROHOQrhcExLCmGNYU5zXF23z7dWbxHwBia5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929298350</pqid></control><display><type>article</type><title>Tunable Dielectric Spectroscopy of PVDF Thin Films Crossbred with TiO2 Nanoparticles for the Storage Devices</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ayub H, Arshad ; Dani, Santhoshkumar ; Khanam, Bibi Raza ; Manohara, Shambonahalli Rajanna ; Khadke, U. V.</creator><creatorcontrib>Ayub H, Arshad ; Dani, Santhoshkumar ; Khanam, Bibi Raza ; Manohara, Shambonahalli Rajanna ; Khadke, U. V.</creatorcontrib><description>Polyvinylidenefluoride (PVDF) is a semi‐crystalline ferroelectric polymer with a wide range of interesting properties and shows potentiality in a variety of technological applications. Flexible thin films of PVDF nanocomposites (NCs) have attracted many researchers due to their tunable electronic properties. This paper reports the synthesis, characterization, and dielectric studies of PVDF‐TiO2 NC thin films. The synthesized films are self‐supporting thin and the average thickness of the thin films is 60 µm measured using a Digital thickness gauge of resolution 0.01 mm. TiO2 nanoparticles are prepared using the combustion method. Commercially available PVDF granules are used to develop PVDF‐TiO2 NC thin films using the film casting technique. The structural study of the prepared thin films is carried out using XRD that confirms the retention of the β‐phase of PVDF. The functional group and bonding nature have been studied using FTIR Spectroscopy. The thermal stability of the NC thin films is studied using TGA. The variation of dielectric constant (DC), dielectric loss (DL), AC conductivity, and dissipation factor of the medium of pristine PVDF and PVDF‐TiO2 NC thin films are studied in the frequency range of 10 Hz to 8 MHz at ambient temperature. The dielectric constant of PVDF‐TiO2 NC thin films increases up to 8 wt% and anomaly for 10 wt% of TiO2 fillers in the PVDF matrix at a lower frequency and found to decrease with increasing frequency. The dielectric loss of NC thin films is high at a lower frequency and decreases with an increase in the frequency that is in good agreement with the Maxwell–Wagner type of interfacial polarization. At lower frequencies, the dielectric constant of PVDF‐TiO2 NC increases with the increase in filler content. AC conductivity shows a sharp increase at higher frequencies whereas the dissipation factor of the polymer NCs remains unaltered with respect to frequency by maintaining the trend. This suggests that PVDF‐TiO2 NC is potential material for energy storage devices.</description><identifier>ISSN: 1022-1360</identifier><identifier>EISSN: 1521-3900</identifier><identifier>DOI: 10.1002/masy.202300029</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>AC conductivity ; Ambient temperature ; Dielectric constant ; Dielectric loss ; Dissipation factor ; Electronic properties ; Energy storage ; Ferroelectricity ; Fillers ; Frequency ranges ; Functional groups ; Nanocomposites ; Nanoparticles ; Permittivity ; Polymers ; polyvinylidene fluoride (PVDF) ; PVDF‐TiO2 nanocomposites ; Spectrum analysis ; Thermal stability ; Thickness measurement ; Thin films ; Titanium dioxide</subject><ispartof>Macromolecular symposia., 2024-02, Vol.413 (1), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8989-1123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmasy.202300029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmasy.202300029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Ayub H, Arshad</creatorcontrib><creatorcontrib>Dani, Santhoshkumar</creatorcontrib><creatorcontrib>Khanam, Bibi Raza</creatorcontrib><creatorcontrib>Manohara, Shambonahalli Rajanna</creatorcontrib><creatorcontrib>Khadke, U. V.</creatorcontrib><title>Tunable Dielectric Spectroscopy of PVDF Thin Films Crossbred with TiO2 Nanoparticles for the Storage Devices</title><title>Macromolecular symposia.</title><description>Polyvinylidenefluoride (PVDF) is a semi‐crystalline ferroelectric polymer with a wide range of interesting properties and shows potentiality in a variety of technological applications. Flexible thin films of PVDF nanocomposites (NCs) have attracted many researchers due to their tunable electronic properties. This paper reports the synthesis, characterization, and dielectric studies of PVDF‐TiO2 NC thin films. The synthesized films are self‐supporting thin and the average thickness of the thin films is 60 µm measured using a Digital thickness gauge of resolution 0.01 mm. TiO2 nanoparticles are prepared using the combustion method. Commercially available PVDF granules are used to develop PVDF‐TiO2 NC thin films using the film casting technique. The structural study of the prepared thin films is carried out using XRD that confirms the retention of the β‐phase of PVDF. The functional group and bonding nature have been studied using FTIR Spectroscopy. The thermal stability of the NC thin films is studied using TGA. The variation of dielectric constant (DC), dielectric loss (DL), AC conductivity, and dissipation factor of the medium of pristine PVDF and PVDF‐TiO2 NC thin films are studied in the frequency range of 10 Hz to 8 MHz at ambient temperature. The dielectric constant of PVDF‐TiO2 NC thin films increases up to 8 wt% and anomaly for 10 wt% of TiO2 fillers in the PVDF matrix at a lower frequency and found to decrease with increasing frequency. The dielectric loss of NC thin films is high at a lower frequency and decreases with an increase in the frequency that is in good agreement with the Maxwell–Wagner type of interfacial polarization. At lower frequencies, the dielectric constant of PVDF‐TiO2 NC increases with the increase in filler content. AC conductivity shows a sharp increase at higher frequencies whereas the dissipation factor of the polymer NCs remains unaltered with respect to frequency by maintaining the trend. This suggests that PVDF‐TiO2 NC is potential material for energy storage devices.</description><subject>AC conductivity</subject><subject>Ambient temperature</subject><subject>Dielectric constant</subject><subject>Dielectric loss</subject><subject>Dissipation factor</subject><subject>Electronic properties</subject><subject>Energy storage</subject><subject>Ferroelectricity</subject><subject>Fillers</subject><subject>Frequency ranges</subject><subject>Functional groups</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Permittivity</subject><subject>Polymers</subject><subject>polyvinylidene fluoride (PVDF)</subject><subject>PVDF‐TiO2 nanocomposites</subject><subject>Spectrum analysis</subject><subject>Thermal stability</subject><subject>Thickness measurement</subject><subject>Thin films</subject><subject>Titanium dioxide</subject><issn>1022-1360</issn><issn>1521-3900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UFFLwzAYDKLgnL76HPC580varMvj2JwK0wkrgk8haVOX0TU1aR3996ZMxvfw3XHHHRxC9wQmBIA-HqTvJxRoDIHxCzQijJIo5gCXAQOlEYmncI1uvN8HC-cpGaEq62qpKo2XRlc6b53J8bYZgPW5bXpsS_zxuVzhbGdqvDLVweNF0LxyusBH0-5wZjYUv8vaNtK1Jq-0x6V1uN1pvG2tk98hXP-aXPtbdFXKyuu7_z9G2eopW7xE683z62K-jhqSzHhEJZ3OCgaMMMkoFEoDFDxRKWGlmuYKYsqJCnIhZZrQkrJCEiVLlZAi1WU8Rg-n2MbZn077Vuxt5-rQKCgfbhYzCC5-ch1NpXvROHOQrhcExLCmGNYU5zXF23z7dWbxHwBia5g</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Ayub H, Arshad</creator><creator>Dani, Santhoshkumar</creator><creator>Khanam, Bibi Raza</creator><creator>Manohara, Shambonahalli Rajanna</creator><creator>Khadke, U. V.</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8989-1123</orcidid></search><sort><creationdate>202402</creationdate><title>Tunable Dielectric Spectroscopy of PVDF Thin Films Crossbred with TiO2 Nanoparticles for the Storage Devices</title><author>Ayub H, Arshad ; Dani, Santhoshkumar ; Khanam, Bibi Raza ; Manohara, Shambonahalli Rajanna ; Khadke, U. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1489-2a268d50515a520dbe00d94b715fb6cb03291b051daa742f25da1bafb41d7ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>AC conductivity</topic><topic>Ambient temperature</topic><topic>Dielectric constant</topic><topic>Dielectric loss</topic><topic>Dissipation factor</topic><topic>Electronic properties</topic><topic>Energy storage</topic><topic>Ferroelectricity</topic><topic>Fillers</topic><topic>Frequency ranges</topic><topic>Functional groups</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Permittivity</topic><topic>Polymers</topic><topic>polyvinylidene fluoride (PVDF)</topic><topic>PVDF‐TiO2 nanocomposites</topic><topic>Spectrum analysis</topic><topic>Thermal stability</topic><topic>Thickness measurement</topic><topic>Thin films</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ayub H, Arshad</creatorcontrib><creatorcontrib>Dani, Santhoshkumar</creatorcontrib><creatorcontrib>Khanam, Bibi Raza</creatorcontrib><creatorcontrib>Manohara, Shambonahalli Rajanna</creatorcontrib><creatorcontrib>Khadke, U. V.</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular symposia.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayub H, Arshad</au><au>Dani, Santhoshkumar</au><au>Khanam, Bibi Raza</au><au>Manohara, Shambonahalli Rajanna</au><au>Khadke, U. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Dielectric Spectroscopy of PVDF Thin Films Crossbred with TiO2 Nanoparticles for the Storage Devices</atitle><jtitle>Macromolecular symposia.</jtitle><date>2024-02</date><risdate>2024</risdate><volume>413</volume><issue>1</issue><epage>n/a</epage><issn>1022-1360</issn><eissn>1521-3900</eissn><abstract>Polyvinylidenefluoride (PVDF) is a semi‐crystalline ferroelectric polymer with a wide range of interesting properties and shows potentiality in a variety of technological applications. Flexible thin films of PVDF nanocomposites (NCs) have attracted many researchers due to their tunable electronic properties. This paper reports the synthesis, characterization, and dielectric studies of PVDF‐TiO2 NC thin films. The synthesized films are self‐supporting thin and the average thickness of the thin films is 60 µm measured using a Digital thickness gauge of resolution 0.01 mm. TiO2 nanoparticles are prepared using the combustion method. Commercially available PVDF granules are used to develop PVDF‐TiO2 NC thin films using the film casting technique. The structural study of the prepared thin films is carried out using XRD that confirms the retention of the β‐phase of PVDF. The functional group and bonding nature have been studied using FTIR Spectroscopy. The thermal stability of the NC thin films is studied using TGA. The variation of dielectric constant (DC), dielectric loss (DL), AC conductivity, and dissipation factor of the medium of pristine PVDF and PVDF‐TiO2 NC thin films are studied in the frequency range of 10 Hz to 8 MHz at ambient temperature. The dielectric constant of PVDF‐TiO2 NC thin films increases up to 8 wt% and anomaly for 10 wt% of TiO2 fillers in the PVDF matrix at a lower frequency and found to decrease with increasing frequency. The dielectric loss of NC thin films is high at a lower frequency and decreases with an increase in the frequency that is in good agreement with the Maxwell–Wagner type of interfacial polarization. At lower frequencies, the dielectric constant of PVDF‐TiO2 NC increases with the increase in filler content. AC conductivity shows a sharp increase at higher frequencies whereas the dissipation factor of the polymer NCs remains unaltered with respect to frequency by maintaining the trend. This suggests that PVDF‐TiO2 NC is potential material for energy storage devices.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/masy.202300029</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8989-1123</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1022-1360
ispartof Macromolecular symposia., 2024-02, Vol.413 (1), p.n/a
issn 1022-1360
1521-3900
language eng
recordid cdi_proquest_journals_2929298350
source Wiley Online Library Journals Frontfile Complete
subjects AC conductivity
Ambient temperature
Dielectric constant
Dielectric loss
Dissipation factor
Electronic properties
Energy storage
Ferroelectricity
Fillers
Frequency ranges
Functional groups
Nanocomposites
Nanoparticles
Permittivity
Polymers
polyvinylidene fluoride (PVDF)
PVDF‐TiO2 nanocomposites
Spectrum analysis
Thermal stability
Thickness measurement
Thin films
Titanium dioxide
title Tunable Dielectric Spectroscopy of PVDF Thin Films Crossbred with TiO2 Nanoparticles for the Storage Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Dielectric%20Spectroscopy%20of%20PVDF%20Thin%20Films%20Crossbred%20with%20TiO2%20Nanoparticles%20for%20the%20Storage%20Devices&rft.jtitle=Macromolecular%20symposia.&rft.au=Ayub%20H,%20Arshad&rft.date=2024-02&rft.volume=413&rft.issue=1&rft.epage=n/a&rft.issn=1022-1360&rft.eissn=1521-3900&rft_id=info:doi/10.1002/masy.202300029&rft_dat=%3Cproquest_wiley%3E2929298350%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929298350&rft_id=info:pmid/&rfr_iscdi=true