Towards audio language modeling -- an overview
Neural audio codecs are initially introduced to compress audio data into compact codes to reduce transmission latency. Researchers recently discovered the potential of codecs as suitable tokenizers for converting continuous audio into discrete codes, which can be employed to develop audio language m...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wu, Haibin Chen, Xuanjun Yi-Cheng, Lin Kai-wei, Chang Ho-Lam, Chung Liu, Alexander H Hung-yi, Lee |
description | Neural audio codecs are initially introduced to compress audio data into compact codes to reduce transmission latency. Researchers recently discovered the potential of codecs as suitable tokenizers for converting continuous audio into discrete codes, which can be employed to develop audio language models (LMs). Numerous high-performance neural audio codecs and codec-based LMs have been developed. The paper aims to provide a thorough and systematic overview of the neural audio codec models and codec-based LMs. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2929276678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929276678</sourcerecordid><originalsourceid>FETCH-proquest_journals_29292766783</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQC8kvTyxKKVZILE3JzFfIScxLL01MT1XIzU9JzcnMS1fQ1VVIzFPIL0stKstMLedhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjSyA0NzMztzAmThUAz2gyEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929276678</pqid></control><display><type>article</type><title>Towards audio language modeling -- an overview</title><source>Freely Accessible Journals</source><creator>Wu, Haibin ; Chen, Xuanjun ; Yi-Cheng, Lin ; Kai-wei, Chang ; Ho-Lam, Chung ; Liu, Alexander H ; Hung-yi, Lee</creator><creatorcontrib>Wu, Haibin ; Chen, Xuanjun ; Yi-Cheng, Lin ; Kai-wei, Chang ; Ho-Lam, Chung ; Liu, Alexander H ; Hung-yi, Lee</creatorcontrib><description>Neural audio codecs are initially introduced to compress audio data into compact codes to reduce transmission latency. Researchers recently discovered the potential of codecs as suitable tokenizers for converting continuous audio into discrete codes, which can be employed to develop audio language models (LMs). Numerous high-performance neural audio codecs and codec-based LMs have been developed. The paper aims to provide a thorough and systematic overview of the neural audio codec models and codec-based LMs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Audio data ; Codec</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Wu, Haibin</creatorcontrib><creatorcontrib>Chen, Xuanjun</creatorcontrib><creatorcontrib>Yi-Cheng, Lin</creatorcontrib><creatorcontrib>Kai-wei, Chang</creatorcontrib><creatorcontrib>Ho-Lam, Chung</creatorcontrib><creatorcontrib>Liu, Alexander H</creatorcontrib><creatorcontrib>Hung-yi, Lee</creatorcontrib><title>Towards audio language modeling -- an overview</title><title>arXiv.org</title><description>Neural audio codecs are initially introduced to compress audio data into compact codes to reduce transmission latency. Researchers recently discovered the potential of codecs as suitable tokenizers for converting continuous audio into discrete codes, which can be employed to develop audio language models (LMs). Numerous high-performance neural audio codecs and codec-based LMs have been developed. The paper aims to provide a thorough and systematic overview of the neural audio codec models and codec-based LMs.</description><subject>Audio data</subject><subject>Codec</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQC8kvTyxKKVZILE3JzFfIScxLL01MT1XIzU9JzcnMS1fQ1VVIzFPIL0stKstMLedhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjSyA0NzMztzAmThUAz2gyEA</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Wu, Haibin</creator><creator>Chen, Xuanjun</creator><creator>Yi-Cheng, Lin</creator><creator>Kai-wei, Chang</creator><creator>Ho-Lam, Chung</creator><creator>Liu, Alexander H</creator><creator>Hung-yi, Lee</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240220</creationdate><title>Towards audio language modeling -- an overview</title><author>Wu, Haibin ; Chen, Xuanjun ; Yi-Cheng, Lin ; Kai-wei, Chang ; Ho-Lam, Chung ; Liu, Alexander H ; Hung-yi, Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29292766783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Audio data</topic><topic>Codec</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Haibin</creatorcontrib><creatorcontrib>Chen, Xuanjun</creatorcontrib><creatorcontrib>Yi-Cheng, Lin</creatorcontrib><creatorcontrib>Kai-wei, Chang</creatorcontrib><creatorcontrib>Ho-Lam, Chung</creatorcontrib><creatorcontrib>Liu, Alexander H</creatorcontrib><creatorcontrib>Hung-yi, Lee</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Haibin</au><au>Chen, Xuanjun</au><au>Yi-Cheng, Lin</au><au>Kai-wei, Chang</au><au>Ho-Lam, Chung</au><au>Liu, Alexander H</au><au>Hung-yi, Lee</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards audio language modeling -- an overview</atitle><jtitle>arXiv.org</jtitle><date>2024-02-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Neural audio codecs are initially introduced to compress audio data into compact codes to reduce transmission latency. Researchers recently discovered the potential of codecs as suitable tokenizers for converting continuous audio into discrete codes, which can be employed to develop audio language models (LMs). Numerous high-performance neural audio codecs and codec-based LMs have been developed. The paper aims to provide a thorough and systematic overview of the neural audio codec models and codec-based LMs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2929276678 |
source | Freely Accessible Journals |
subjects | Audio data Codec |
title | Towards audio language modeling -- an overview |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20audio%20language%20modeling%20--%20an%20overview&rft.jtitle=arXiv.org&rft.au=Wu,%20Haibin&rft.date=2024-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2929276678%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929276678&rft_id=info:pmid/&rfr_iscdi=true |