Federated Learning for Iot/Edge/Fog Computing Systems
With the help of a new architecture called Edge/Fog (E/F) computing, cloud computing services can now be extended nearer to data generator devices. E/F computing in combination with Deep Learning (DL) is a promisedtechnique that is vastly applied in numerous fields. To train their models, data produ...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Balqees, Talal Hasan Ali Kadhum Idrees |
description | With the help of a new architecture called Edge/Fog (E/F) computing, cloud computing services can now be extended nearer to data generator devices. E/F computing in combination with Deep Learning (DL) is a promisedtechnique that is vastly applied in numerous fields. To train their models, data producers in conventional DL architectures with E/F computing enable them to repeatedly transmit and communicate data with third-party servers, like Edge/Fog or cloud servers. Due to the extensive bandwidth needs, legal issues, and privacy risks, this architecture is frequently impractical. Through a centralized server, the models can be co-trained by FL through distributed clients, including cars, hospitals, and mobile phones, while preserving data localization. As it facilitates group learning and model optimization, FL can therefore be seen as a motivating element in the E/F computing paradigm. Although FL applications in E/F computing environments have been considered in previous studies, FL execution and hurdles in the E/F computing framework have not been thoroughly covered. In order to identify advanced solutions, this chapter will provide a review of the application of FL in E/F computing systems. We think that by doing this chapter, researchers will learn more about how E/F computing and FL enable related concepts and technologies. Some case studies about the implementation of federated learning in E/F computing are being investigated. The open issues and future research directions are introduced. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2929273614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929273614</sourcerecordid><originalsourceid>FETCH-proquest_journals_29292736143</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdUtNSS1KLElNUfBJTSzKy8xLV0jLL1LwzC_Rd01JT9V3y09XcM7PLSgtAUkFVxaXpOYW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJElEJobmxmaGBOnCgBNzDR4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929273614</pqid></control><display><type>article</type><title>Federated Learning for Iot/Edge/Fog Computing Systems</title><source>Free E- Journals</source><creator>Balqees, Talal Hasan ; Ali Kadhum Idrees</creator><creatorcontrib>Balqees, Talal Hasan ; Ali Kadhum Idrees</creatorcontrib><description>With the help of a new architecture called Edge/Fog (E/F) computing, cloud computing services can now be extended nearer to data generator devices. E/F computing in combination with Deep Learning (DL) is a promisedtechnique that is vastly applied in numerous fields. To train their models, data producers in conventional DL architectures with E/F computing enable them to repeatedly transmit and communicate data with third-party servers, like Edge/Fog or cloud servers. Due to the extensive bandwidth needs, legal issues, and privacy risks, this architecture is frequently impractical. Through a centralized server, the models can be co-trained by FL through distributed clients, including cars, hospitals, and mobile phones, while preserving data localization. As it facilitates group learning and model optimization, FL can therefore be seen as a motivating element in the E/F computing paradigm. Although FL applications in E/F computing environments have been considered in previous studies, FL execution and hurdles in the E/F computing framework have not been thoroughly covered. In order to identify advanced solutions, this chapter will provide a review of the application of FL in E/F computing systems. We think that by doing this chapter, researchers will learn more about how E/F computing and FL enable related concepts and technologies. Some case studies about the implementation of federated learning in E/F computing are being investigated. The open issues and future research directions are introduced.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cloud computing ; Computer architecture ; Deep learning ; Edge computing ; Legal issues</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Balqees, Talal Hasan</creatorcontrib><creatorcontrib>Ali Kadhum Idrees</creatorcontrib><title>Federated Learning for Iot/Edge/Fog Computing Systems</title><title>arXiv.org</title><description>With the help of a new architecture called Edge/Fog (E/F) computing, cloud computing services can now be extended nearer to data generator devices. E/F computing in combination with Deep Learning (DL) is a promisedtechnique that is vastly applied in numerous fields. To train their models, data producers in conventional DL architectures with E/F computing enable them to repeatedly transmit and communicate data with third-party servers, like Edge/Fog or cloud servers. Due to the extensive bandwidth needs, legal issues, and privacy risks, this architecture is frequently impractical. Through a centralized server, the models can be co-trained by FL through distributed clients, including cars, hospitals, and mobile phones, while preserving data localization. As it facilitates group learning and model optimization, FL can therefore be seen as a motivating element in the E/F computing paradigm. Although FL applications in E/F computing environments have been considered in previous studies, FL execution and hurdles in the E/F computing framework have not been thoroughly covered. In order to identify advanced solutions, this chapter will provide a review of the application of FL in E/F computing systems. We think that by doing this chapter, researchers will learn more about how E/F computing and FL enable related concepts and technologies. Some case studies about the implementation of federated learning in E/F computing are being investigated. The open issues and future research directions are introduced.</description><subject>Cloud computing</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Legal issues</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdUtNSS1KLElNUfBJTSzKy8xLV0jLL1LwzC_Rd01JT9V3y09XcM7PLSgtAUkFVxaXpOYW8zCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJElEJobmxmaGBOnCgBNzDR4</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Balqees, Talal Hasan</creator><creator>Ali Kadhum Idrees</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240220</creationdate><title>Federated Learning for Iot/Edge/Fog Computing Systems</title><author>Balqees, Talal Hasan ; Ali Kadhum Idrees</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29292736143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cloud computing</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Legal issues</topic><toplevel>online_resources</toplevel><creatorcontrib>Balqees, Talal Hasan</creatorcontrib><creatorcontrib>Ali Kadhum Idrees</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balqees, Talal Hasan</au><au>Ali Kadhum Idrees</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Federated Learning for Iot/Edge/Fog Computing Systems</atitle><jtitle>arXiv.org</jtitle><date>2024-02-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>With the help of a new architecture called Edge/Fog (E/F) computing, cloud computing services can now be extended nearer to data generator devices. E/F computing in combination with Deep Learning (DL) is a promisedtechnique that is vastly applied in numerous fields. To train their models, data producers in conventional DL architectures with E/F computing enable them to repeatedly transmit and communicate data with third-party servers, like Edge/Fog or cloud servers. Due to the extensive bandwidth needs, legal issues, and privacy risks, this architecture is frequently impractical. Through a centralized server, the models can be co-trained by FL through distributed clients, including cars, hospitals, and mobile phones, while preserving data localization. As it facilitates group learning and model optimization, FL can therefore be seen as a motivating element in the E/F computing paradigm. Although FL applications in E/F computing environments have been considered in previous studies, FL execution and hurdles in the E/F computing framework have not been thoroughly covered. In order to identify advanced solutions, this chapter will provide a review of the application of FL in E/F computing systems. We think that by doing this chapter, researchers will learn more about how E/F computing and FL enable related concepts and technologies. Some case studies about the implementation of federated learning in E/F computing are being investigated. The open issues and future research directions are introduced.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2929273614 |
source | Free E- Journals |
subjects | Cloud computing Computer architecture Deep learning Edge computing Legal issues |
title | Federated Learning for Iot/Edge/Fog Computing Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T19%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Federated%20Learning%20for%20Iot/Edge/Fog%20Computing%20Systems&rft.jtitle=arXiv.org&rft.au=Balqees,%20Talal%20Hasan&rft.date=2024-02-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2929273614%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929273614&rft_id=info:pmid/&rfr_iscdi=true |