TorchCP: A Python Library for Conformal Prediction

Conformal Prediction (CP) has attracted great attention from the research community due to its strict theoretical guarantees. However, researchers and developers still face challenges of applicability and efficiency when applying CP algorithms to deep learning models. In this paper, we introduce \to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Huang, Jianguo, Song, Jianqing, Zhou, Xuanning, Bingyi Jing, Wei, Hongxin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Huang, Jianguo
Song, Jianqing
Zhou, Xuanning
Bingyi Jing
Wei, Hongxin
description Conformal Prediction (CP) has attracted great attention from the research community due to its strict theoretical guarantees. However, researchers and developers still face challenges of applicability and efficiency when applying CP algorithms to deep learning models. In this paper, we introduce \torchcp, a comprehensive PyTorch-based toolkit to strengthen the usability of CP for deep learning models. \torchcp implements a wide range of post-hoc and training methods of conformal prediction for various machine learning tasks, including classification, regression, GNN, and LLM. Moreover, we provide user-friendly interfaces and extensive evaluations to easily integrate CP algorithms into specific tasks. Our \torchcp toolkit, built entirely with PyTorch, enables high-performance GPU acceleration for deep learning models and mini-batch computation on large-scale datasets. With the LGPL license, the code is open-sourced at \url{https://github.com/ml-stat-Sustech/TorchCP} and will be continuously updated.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2929273600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929273600</sourcerecordid><originalsourceid>FETCH-proquest_journals_29292736003</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCskvSs5wDrBScFQIqCzJyM9T8MlMKkosqlRIyy9ScM7PA1K5iTkKAUWpKZnJJZn5eTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kCYTmxmYGBsbEqQIAfl0zJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929273600</pqid></control><display><type>article</type><title>TorchCP: A Python Library for Conformal Prediction</title><source>Free E- Journals</source><creator>Huang, Jianguo ; Song, Jianqing ; Zhou, Xuanning ; Bingyi Jing ; Wei, Hongxin</creator><creatorcontrib>Huang, Jianguo ; Song, Jianqing ; Zhou, Xuanning ; Bingyi Jing ; Wei, Hongxin</creatorcontrib><description>Conformal Prediction (CP) has attracted great attention from the research community due to its strict theoretical guarantees. However, researchers and developers still face challenges of applicability and efficiency when applying CP algorithms to deep learning models. In this paper, we introduce \torchcp, a comprehensive PyTorch-based toolkit to strengthen the usability of CP for deep learning models. \torchcp implements a wide range of post-hoc and training methods of conformal prediction for various machine learning tasks, including classification, regression, GNN, and LLM. Moreover, we provide user-friendly interfaces and extensive evaluations to easily integrate CP algorithms into specific tasks. Our \torchcp toolkit, built entirely with PyTorch, enables high-performance GPU acceleration for deep learning models and mini-batch computation on large-scale datasets. With the LGPL license, the code is open-sourced at \url{https://github.com/ml-stat-Sustech/TorchCP} and will be continuously updated.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Multidimensional methods</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Huang, Jianguo</creatorcontrib><creatorcontrib>Song, Jianqing</creatorcontrib><creatorcontrib>Zhou, Xuanning</creatorcontrib><creatorcontrib>Bingyi Jing</creatorcontrib><creatorcontrib>Wei, Hongxin</creatorcontrib><title>TorchCP: A Python Library for Conformal Prediction</title><title>arXiv.org</title><description>Conformal Prediction (CP) has attracted great attention from the research community due to its strict theoretical guarantees. However, researchers and developers still face challenges of applicability and efficiency when applying CP algorithms to deep learning models. In this paper, we introduce \torchcp, a comprehensive PyTorch-based toolkit to strengthen the usability of CP for deep learning models. \torchcp implements a wide range of post-hoc and training methods of conformal prediction for various machine learning tasks, including classification, regression, GNN, and LLM. Moreover, we provide user-friendly interfaces and extensive evaluations to easily integrate CP algorithms into specific tasks. Our \torchcp toolkit, built entirely with PyTorch, enables high-performance GPU acceleration for deep learning models and mini-batch computation on large-scale datasets. With the LGPL license, the code is open-sourced at \url{https://github.com/ml-stat-Sustech/TorchCP} and will be continuously updated.</description><subject>Multidimensional methods</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwCskvSs5wDrBScFQIqCzJyM9T8MlMKkosqlRIyy9ScM7PA1K5iTkKAUWpKZnJJZn5eTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-K7-0KA8oFW9kCYTmxmYGBsbEqQIAfl0zJQ</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Huang, Jianguo</creator><creator>Song, Jianqing</creator><creator>Zhou, Xuanning</creator><creator>Bingyi Jing</creator><creator>Wei, Hongxin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241212</creationdate><title>TorchCP: A Python Library for Conformal Prediction</title><author>Huang, Jianguo ; Song, Jianqing ; Zhou, Xuanning ; Bingyi Jing ; Wei, Hongxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29292736003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Multidimensional methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jianguo</creatorcontrib><creatorcontrib>Song, Jianqing</creatorcontrib><creatorcontrib>Zhou, Xuanning</creatorcontrib><creatorcontrib>Bingyi Jing</creatorcontrib><creatorcontrib>Wei, Hongxin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jianguo</au><au>Song, Jianqing</au><au>Zhou, Xuanning</au><au>Bingyi Jing</au><au>Wei, Hongxin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TorchCP: A Python Library for Conformal Prediction</atitle><jtitle>arXiv.org</jtitle><date>2024-12-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Conformal Prediction (CP) has attracted great attention from the research community due to its strict theoretical guarantees. However, researchers and developers still face challenges of applicability and efficiency when applying CP algorithms to deep learning models. In this paper, we introduce \torchcp, a comprehensive PyTorch-based toolkit to strengthen the usability of CP for deep learning models. \torchcp implements a wide range of post-hoc and training methods of conformal prediction for various machine learning tasks, including classification, regression, GNN, and LLM. Moreover, we provide user-friendly interfaces and extensive evaluations to easily integrate CP algorithms into specific tasks. Our \torchcp toolkit, built entirely with PyTorch, enables high-performance GPU acceleration for deep learning models and mini-batch computation on large-scale datasets. With the LGPL license, the code is open-sourced at \url{https://github.com/ml-stat-Sustech/TorchCP} and will be continuously updated.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2929273600
source Free E- Journals
subjects Multidimensional methods
title TorchCP: A Python Library for Conformal Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A31%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TorchCP:%20A%20Python%20Library%20for%20Conformal%20Prediction&rft.jtitle=arXiv.org&rft.au=Huang,%20Jianguo&rft.date=2024-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2929273600%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929273600&rft_id=info:pmid/&rfr_iscdi=true