A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization

The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics journal 2024-04, Vol.16 (2), p.1-6
Hauptverfasser: Zhang, Liuxin, Ying, Kang, Wang, Guochao, Pi, Haoyang, Wang, Zhaoyong, Sun, Yanguang, Wei, Fang, Gui, Youzhen, Ye, Qing, Cai, Haiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2
container_start_page 1
container_title IEEE photonics journal
container_volume 16
creator Zhang, Liuxin
Ying, Kang
Wang, Guochao
Pi, Haoyang
Wang, Zhaoyong
Sun, Yanguang
Wei, Fang
Gui, Youzhen
Ye, Qing
Cai, Haiwen
description The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a dual-cavity laser frequency stabilization system based on an intracavity dual-mode self-reference mechanism. With this approach, we achieve remarkable results with a laser frequency drift of about 6.6 kHz and an Allen deviation (ADEV) of 10 −13 levels over an integration time scale from 0.01 s to 1000 s. Notably, the solution achieves one of the best results without the need for an external reference structure. This work provides a way to realize wavelength-stabilized laser sources by interlocking two DFB lasers. This approach is distinguished by its simplicity and cost-effectiveness, making it a promising option for a variety of applications outside of the laboratory environment.
doi_str_mv 10.1109/JPHOT.2024.3360291
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2929267079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10416663</ieee_id><doaj_id>oai_doaj_org_article_c90b0da35219459897680bf7225f3f48</doaj_id><sourcerecordid>2929267079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4f4edb3ac4b970bf31816a85d372c71f936c8e69776eef3bc32ad31e50262f4d3</originalsourceid><addsrcrecordid>eNpNUV1rFTEQXUTBWv0D4sOCz3vNdzaPtbb2yi0VW_ExzCaT21zXTZvNLdRfb9otRQZmhsOcM8OcpnlPyYpSYj59-352cbVihIkV54owQ180B9QI3hEl9MvnXsrXzZt53hGiDJXmoLk9aj_DCJND337Zw9itp5LBwV0s9wtwnjy2FcU8Jvc7Ttv2HMt18m1IuT2NA-Z2A3PNlziG7gcGzFjl2l9whyNO23LdXhYY4hj_Qolpetu8CjDO-O6pHjY_T0-ujs-6zcXX9fHRpnNc6tKJINAPHJwYjCZD4LSnCnrpuWZO02C4cj0qo7VCDHxwnIHnFCVhigXh-WGzXnR9gp29yfEP5HubINpHIOWthVyiG9E6QwbigUtW3yRNb7Tq60rNmAw8iL5qfVy0bnK63eNc7C7t81TPt8zUUJpoU6fYMuVymueM4XkrJfbBJvtok32wyT7ZVEkfFlJExP8IgiqlOP8HdQmOKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929267079</pqid></control><display><type>article</type><title>A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Liuxin ; Ying, Kang ; Wang, Guochao ; Pi, Haoyang ; Wang, Zhaoyong ; Sun, Yanguang ; Wei, Fang ; Gui, Youzhen ; Ye, Qing ; Cai, Haiwen</creator><creatorcontrib>Zhang, Liuxin ; Ying, Kang ; Wang, Guochao ; Pi, Haoyang ; Wang, Zhaoyong ; Sun, Yanguang ; Wei, Fang ; Gui, Youzhen ; Ye, Qing ; Cai, Haiwen</creatorcontrib><description>The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a dual-cavity laser frequency stabilization system based on an intracavity dual-mode self-reference mechanism. With this approach, we achieve remarkable results with a laser frequency drift of about 6.6 kHz and an Allen deviation (ADEV) of 10 −13 levels over an integration time scale from 0.01 s to 1000 s. Notably, the solution achieves one of the best results without the need for an external reference structure. This work provides a way to realize wavelength-stabilized laser sources by interlocking two DFB lasers. This approach is distinguished by its simplicity and cost-effectiveness, making it a promising option for a variety of applications outside of the laboratory environment.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2024.3360291</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Distributed feedback lasers ; Dual-mode ; Fiber lasers ; Frequency control ; Frequency drift ; Frequency stabilization ; Laser applications ; Laser feedback ; Laser mode locking ; laser noise ; Laser stability ; Lasers ; Locking ; Stability criteria ; Thermal stability</subject><ispartof>IEEE photonics journal, 2024-04, Vol.16 (2), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-4f4edb3ac4b970bf31816a85d372c71f936c8e69776eef3bc32ad31e50262f4d3</cites><orcidid>0000-0002-8119-6740 ; 0000-0002-7033-6349 ; 0009-0009-6443-9462 ; 0009-0003-7668-9887 ; 0000-0002-2341-3030 ; 0000-0003-4653-3964 ; 0000-0001-9963-4318 ; 0000-0003-4346-3497 ; 0000-0003-0235-5596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10416663$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Zhang, Liuxin</creatorcontrib><creatorcontrib>Ying, Kang</creatorcontrib><creatorcontrib>Wang, Guochao</creatorcontrib><creatorcontrib>Pi, Haoyang</creatorcontrib><creatorcontrib>Wang, Zhaoyong</creatorcontrib><creatorcontrib>Sun, Yanguang</creatorcontrib><creatorcontrib>Wei, Fang</creatorcontrib><creatorcontrib>Gui, Youzhen</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Cai, Haiwen</creatorcontrib><title>A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a dual-cavity laser frequency stabilization system based on an intracavity dual-mode self-reference mechanism. With this approach, we achieve remarkable results with a laser frequency drift of about 6.6 kHz and an Allen deviation (ADEV) of 10 −13 levels over an integration time scale from 0.01 s to 1000 s. Notably, the solution achieves one of the best results without the need for an external reference structure. This work provides a way to realize wavelength-stabilized laser sources by interlocking two DFB lasers. This approach is distinguished by its simplicity and cost-effectiveness, making it a promising option for a variety of applications outside of the laboratory environment.</description><subject>Distributed feedback lasers</subject><subject>Dual-mode</subject><subject>Fiber lasers</subject><subject>Frequency control</subject><subject>Frequency drift</subject><subject>Frequency stabilization</subject><subject>Laser applications</subject><subject>Laser feedback</subject><subject>Laser mode locking</subject><subject>laser noise</subject><subject>Laser stability</subject><subject>Lasers</subject><subject>Locking</subject><subject>Stability criteria</subject><subject>Thermal stability</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rFTEQXUTBWv0D4sOCz3vNdzaPtbb2yi0VW_ExzCaT21zXTZvNLdRfb9otRQZmhsOcM8OcpnlPyYpSYj59-352cbVihIkV54owQ180B9QI3hEl9MvnXsrXzZt53hGiDJXmoLk9aj_DCJND337Zw9itp5LBwV0s9wtwnjy2FcU8Jvc7Ttv2HMt18m1IuT2NA-Z2A3PNlziG7gcGzFjl2l9whyNO23LdXhYY4hj_Qolpetu8CjDO-O6pHjY_T0-ujs-6zcXX9fHRpnNc6tKJINAPHJwYjCZD4LSnCnrpuWZO02C4cj0qo7VCDHxwnIHnFCVhigXh-WGzXnR9gp29yfEP5HubINpHIOWthVyiG9E6QwbigUtW3yRNb7Tq60rNmAw8iL5qfVy0bnK63eNc7C7t81TPt8zUUJpoU6fYMuVymueM4XkrJfbBJvtok32wyT7ZVEkfFlJExP8IgiqlOP8HdQmOKQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhang, Liuxin</creator><creator>Ying, Kang</creator><creator>Wang, Guochao</creator><creator>Pi, Haoyang</creator><creator>Wang, Zhaoyong</creator><creator>Sun, Yanguang</creator><creator>Wei, Fang</creator><creator>Gui, Youzhen</creator><creator>Ye, Qing</creator><creator>Cai, Haiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8119-6740</orcidid><orcidid>https://orcid.org/0000-0002-7033-6349</orcidid><orcidid>https://orcid.org/0009-0009-6443-9462</orcidid><orcidid>https://orcid.org/0009-0003-7668-9887</orcidid><orcidid>https://orcid.org/0000-0002-2341-3030</orcidid><orcidid>https://orcid.org/0000-0003-4653-3964</orcidid><orcidid>https://orcid.org/0000-0001-9963-4318</orcidid><orcidid>https://orcid.org/0000-0003-4346-3497</orcidid><orcidid>https://orcid.org/0000-0003-0235-5596</orcidid></search><sort><creationdate>20240401</creationdate><title>A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization</title><author>Zhang, Liuxin ; Ying, Kang ; Wang, Guochao ; Pi, Haoyang ; Wang, Zhaoyong ; Sun, Yanguang ; Wei, Fang ; Gui, Youzhen ; Ye, Qing ; Cai, Haiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4f4edb3ac4b970bf31816a85d372c71f936c8e69776eef3bc32ad31e50262f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distributed feedback lasers</topic><topic>Dual-mode</topic><topic>Fiber lasers</topic><topic>Frequency control</topic><topic>Frequency drift</topic><topic>Frequency stabilization</topic><topic>Laser applications</topic><topic>Laser feedback</topic><topic>Laser mode locking</topic><topic>laser noise</topic><topic>Laser stability</topic><topic>Lasers</topic><topic>Locking</topic><topic>Stability criteria</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liuxin</creatorcontrib><creatorcontrib>Ying, Kang</creatorcontrib><creatorcontrib>Wang, Guochao</creatorcontrib><creatorcontrib>Pi, Haoyang</creatorcontrib><creatorcontrib>Wang, Zhaoyong</creatorcontrib><creatorcontrib>Sun, Yanguang</creatorcontrib><creatorcontrib>Wei, Fang</creatorcontrib><creatorcontrib>Gui, Youzhen</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Cai, Haiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liuxin</au><au>Ying, Kang</au><au>Wang, Guochao</au><au>Pi, Haoyang</au><au>Wang, Zhaoyong</au><au>Sun, Yanguang</au><au>Wei, Fang</au><au>Gui, Youzhen</au><au>Ye, Qing</au><au>Cai, Haiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a dual-cavity laser frequency stabilization system based on an intracavity dual-mode self-reference mechanism. With this approach, we achieve remarkable results with a laser frequency drift of about 6.6 kHz and an Allen deviation (ADEV) of 10 −13 levels over an integration time scale from 0.01 s to 1000 s. Notably, the solution achieves one of the best results without the need for an external reference structure. This work provides a way to realize wavelength-stabilized laser sources by interlocking two DFB lasers. This approach is distinguished by its simplicity and cost-effectiveness, making it a promising option for a variety of applications outside of the laboratory environment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2024.3360291</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8119-6740</orcidid><orcidid>https://orcid.org/0000-0002-7033-6349</orcidid><orcidid>https://orcid.org/0009-0009-6443-9462</orcidid><orcidid>https://orcid.org/0009-0003-7668-9887</orcidid><orcidid>https://orcid.org/0000-0002-2341-3030</orcidid><orcidid>https://orcid.org/0000-0003-4653-3964</orcidid><orcidid>https://orcid.org/0000-0001-9963-4318</orcidid><orcidid>https://orcid.org/0000-0003-4346-3497</orcidid><orcidid>https://orcid.org/0000-0003-0235-5596</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1943-0655
ispartof IEEE photonics journal, 2024-04, Vol.16 (2), p.1-6
issn 1943-0655
1943-0647
language eng
recordid cdi_proquest_journals_2929267079
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Distributed feedback lasers
Dual-mode
Fiber lasers
Frequency control
Frequency drift
Frequency stabilization
Laser applications
Laser feedback
Laser mode locking
laser noise
Laser stability
Lasers
Locking
Stability criteria
Thermal stability
title A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Balanced%20Dual-Intracavity%20Dual-Mode%20Interlocking%20Method%20for%20Fiber%20Laser%20Self-Reference%20Wavelength%20Stabilization&rft.jtitle=IEEE%20photonics%20journal&rft.au=Zhang,%20Liuxin&rft.date=2024-04-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2024.3360291&rft_dat=%3Cproquest_ieee_%3E2929267079%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929267079&rft_id=info:pmid/&rft_ieee_id=10416663&rft_doaj_id=oai_doaj_org_article_c90b0da35219459897680bf7225f3f48&rfr_iscdi=true