A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization
The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a d...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2024-04, Vol.16 (2), p.1-6 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 16 |
creator | Zhang, Liuxin Ying, Kang Wang, Guochao Pi, Haoyang Wang, Zhaoyong Sun, Yanguang Wei, Fang Gui, Youzhen Ye, Qing Cai, Haiwen |
description | The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a dual-cavity laser frequency stabilization system based on an intracavity dual-mode self-reference mechanism. With this approach, we achieve remarkable results with a laser frequency drift of about 6.6 kHz and an Allen deviation (ADEV) of 10 −13 levels over an integration time scale from 0.01 s to 1000 s. Notably, the solution achieves one of the best results without the need for an external reference structure. This work provides a way to realize wavelength-stabilized laser sources by interlocking two DFB lasers. This approach is distinguished by its simplicity and cost-effectiveness, making it a promising option for a variety of applications outside of the laboratory environment. |
doi_str_mv | 10.1109/JPHOT.2024.3360291 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2929267079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10416663</ieee_id><doaj_id>oai_doaj_org_article_c90b0da35219459897680bf7225f3f48</doaj_id><sourcerecordid>2929267079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-4f4edb3ac4b970bf31816a85d372c71f936c8e69776eef3bc32ad31e50262f4d3</originalsourceid><addsrcrecordid>eNpNUV1rFTEQXUTBWv0D4sOCz3vNdzaPtbb2yi0VW_ExzCaT21zXTZvNLdRfb9otRQZmhsOcM8OcpnlPyYpSYj59-352cbVihIkV54owQ180B9QI3hEl9MvnXsrXzZt53hGiDJXmoLk9aj_DCJND337Zw9itp5LBwV0s9wtwnjy2FcU8Jvc7Ttv2HMt18m1IuT2NA-Z2A3PNlziG7gcGzFjl2l9whyNO23LdXhYY4hj_Qolpetu8CjDO-O6pHjY_T0-ujs-6zcXX9fHRpnNc6tKJINAPHJwYjCZD4LSnCnrpuWZO02C4cj0qo7VCDHxwnIHnFCVhigXh-WGzXnR9gp29yfEP5HubINpHIOWthVyiG9E6QwbigUtW3yRNb7Tq60rNmAw8iL5qfVy0bnK63eNc7C7t81TPt8zUUJpoU6fYMuVymueM4XkrJfbBJvtok32wyT7ZVEkfFlJExP8IgiqlOP8HdQmOKQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929267079</pqid></control><display><type>article</type><title>A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhang, Liuxin ; Ying, Kang ; Wang, Guochao ; Pi, Haoyang ; Wang, Zhaoyong ; Sun, Yanguang ; Wei, Fang ; Gui, Youzhen ; Ye, Qing ; Cai, Haiwen</creator><creatorcontrib>Zhang, Liuxin ; Ying, Kang ; Wang, Guochao ; Pi, Haoyang ; Wang, Zhaoyong ; Sun, Yanguang ; Wei, Fang ; Gui, Youzhen ; Ye, Qing ; Cai, Haiwen</creatorcontrib><description>The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a dual-cavity laser frequency stabilization system based on an intracavity dual-mode self-reference mechanism. With this approach, we achieve remarkable results with a laser frequency drift of about 6.6 kHz and an Allen deviation (ADEV) of 10 −13 levels over an integration time scale from 0.01 s to 1000 s. Notably, the solution achieves one of the best results without the need for an external reference structure. This work provides a way to realize wavelength-stabilized laser sources by interlocking two DFB lasers. This approach is distinguished by its simplicity and cost-effectiveness, making it a promising option for a variety of applications outside of the laboratory environment.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2024.3360291</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Distributed feedback lasers ; Dual-mode ; Fiber lasers ; Frequency control ; Frequency drift ; Frequency stabilization ; Laser applications ; Laser feedback ; Laser mode locking ; laser noise ; Laser stability ; Lasers ; Locking ; Stability criteria ; Thermal stability</subject><ispartof>IEEE photonics journal, 2024-04, Vol.16 (2), p.1-6</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-4f4edb3ac4b970bf31816a85d372c71f936c8e69776eef3bc32ad31e50262f4d3</cites><orcidid>0000-0002-8119-6740 ; 0000-0002-7033-6349 ; 0009-0009-6443-9462 ; 0009-0003-7668-9887 ; 0000-0002-2341-3030 ; 0000-0003-4653-3964 ; 0000-0001-9963-4318 ; 0000-0003-4346-3497 ; 0000-0003-0235-5596</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10416663$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,27612,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Zhang, Liuxin</creatorcontrib><creatorcontrib>Ying, Kang</creatorcontrib><creatorcontrib>Wang, Guochao</creatorcontrib><creatorcontrib>Pi, Haoyang</creatorcontrib><creatorcontrib>Wang, Zhaoyong</creatorcontrib><creatorcontrib>Sun, Yanguang</creatorcontrib><creatorcontrib>Wei, Fang</creatorcontrib><creatorcontrib>Gui, Youzhen</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Cai, Haiwen</creatorcontrib><title>A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a dual-cavity laser frequency stabilization system based on an intracavity dual-mode self-reference mechanism. With this approach, we achieve remarkable results with a laser frequency drift of about 6.6 kHz and an Allen deviation (ADEV) of 10 −13 levels over an integration time scale from 0.01 s to 1000 s. Notably, the solution achieves one of the best results without the need for an external reference structure. This work provides a way to realize wavelength-stabilized laser sources by interlocking two DFB lasers. This approach is distinguished by its simplicity and cost-effectiveness, making it a promising option for a variety of applications outside of the laboratory environment.</description><subject>Distributed feedback lasers</subject><subject>Dual-mode</subject><subject>Fiber lasers</subject><subject>Frequency control</subject><subject>Frequency drift</subject><subject>Frequency stabilization</subject><subject>Laser applications</subject><subject>Laser feedback</subject><subject>Laser mode locking</subject><subject>laser noise</subject><subject>Laser stability</subject><subject>Lasers</subject><subject>Locking</subject><subject>Stability criteria</subject><subject>Thermal stability</subject><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1rFTEQXUTBWv0D4sOCz3vNdzaPtbb2yi0VW_ExzCaT21zXTZvNLdRfb9otRQZmhsOcM8OcpnlPyYpSYj59-352cbVihIkV54owQ180B9QI3hEl9MvnXsrXzZt53hGiDJXmoLk9aj_DCJND337Zw9itp5LBwV0s9wtwnjy2FcU8Jvc7Ttv2HMt18m1IuT2NA-Z2A3PNlziG7gcGzFjl2l9whyNO23LdXhYY4hj_Qolpetu8CjDO-O6pHjY_T0-ujs-6zcXX9fHRpnNc6tKJINAPHJwYjCZD4LSnCnrpuWZO02C4cj0qo7VCDHxwnIHnFCVhigXh-WGzXnR9gp29yfEP5HubINpHIOWthVyiG9E6QwbigUtW3yRNb7Tq60rNmAw8iL5qfVy0bnK63eNc7C7t81TPt8zUUJpoU6fYMuVymueM4XkrJfbBJvtok32wyT7ZVEkfFlJExP8IgiqlOP8HdQmOKQ</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Zhang, Liuxin</creator><creator>Ying, Kang</creator><creator>Wang, Guochao</creator><creator>Pi, Haoyang</creator><creator>Wang, Zhaoyong</creator><creator>Sun, Yanguang</creator><creator>Wei, Fang</creator><creator>Gui, Youzhen</creator><creator>Ye, Qing</creator><creator>Cai, Haiwen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8119-6740</orcidid><orcidid>https://orcid.org/0000-0002-7033-6349</orcidid><orcidid>https://orcid.org/0009-0009-6443-9462</orcidid><orcidid>https://orcid.org/0009-0003-7668-9887</orcidid><orcidid>https://orcid.org/0000-0002-2341-3030</orcidid><orcidid>https://orcid.org/0000-0003-4653-3964</orcidid><orcidid>https://orcid.org/0000-0001-9963-4318</orcidid><orcidid>https://orcid.org/0000-0003-4346-3497</orcidid><orcidid>https://orcid.org/0000-0003-0235-5596</orcidid></search><sort><creationdate>20240401</creationdate><title>A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization</title><author>Zhang, Liuxin ; Ying, Kang ; Wang, Guochao ; Pi, Haoyang ; Wang, Zhaoyong ; Sun, Yanguang ; Wei, Fang ; Gui, Youzhen ; Ye, Qing ; Cai, Haiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-4f4edb3ac4b970bf31816a85d372c71f936c8e69776eef3bc32ad31e50262f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distributed feedback lasers</topic><topic>Dual-mode</topic><topic>Fiber lasers</topic><topic>Frequency control</topic><topic>Frequency drift</topic><topic>Frequency stabilization</topic><topic>Laser applications</topic><topic>Laser feedback</topic><topic>Laser mode locking</topic><topic>laser noise</topic><topic>Laser stability</topic><topic>Lasers</topic><topic>Locking</topic><topic>Stability criteria</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liuxin</creatorcontrib><creatorcontrib>Ying, Kang</creatorcontrib><creatorcontrib>Wang, Guochao</creatorcontrib><creatorcontrib>Pi, Haoyang</creatorcontrib><creatorcontrib>Wang, Zhaoyong</creatorcontrib><creatorcontrib>Sun, Yanguang</creatorcontrib><creatorcontrib>Wei, Fang</creatorcontrib><creatorcontrib>Gui, Youzhen</creatorcontrib><creatorcontrib>Ye, Qing</creatorcontrib><creatorcontrib>Cai, Haiwen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liuxin</au><au>Ying, Kang</au><au>Wang, Guochao</au><au>Pi, Haoyang</au><au>Wang, Zhaoyong</au><au>Sun, Yanguang</au><au>Wei, Fang</au><au>Gui, Youzhen</au><au>Ye, Qing</au><au>Cai, Haiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>16</volume><issue>2</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1943-0655</issn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>The laser frequency stabilization technology is very important in the development of laser applications, and the improvement of this technology has tend to further expectations for portability and low cost, in addition to the realization of strict frequency control. In this context, we construct a dual-cavity laser frequency stabilization system based on an intracavity dual-mode self-reference mechanism. With this approach, we achieve remarkable results with a laser frequency drift of about 6.6 kHz and an Allen deviation (ADEV) of 10 −13 levels over an integration time scale from 0.01 s to 1000 s. Notably, the solution achieves one of the best results without the need for an external reference structure. This work provides a way to realize wavelength-stabilized laser sources by interlocking two DFB lasers. This approach is distinguished by its simplicity and cost-effectiveness, making it a promising option for a variety of applications outside of the laboratory environment.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2024.3360291</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8119-6740</orcidid><orcidid>https://orcid.org/0000-0002-7033-6349</orcidid><orcidid>https://orcid.org/0009-0009-6443-9462</orcidid><orcidid>https://orcid.org/0009-0003-7668-9887</orcidid><orcidid>https://orcid.org/0000-0002-2341-3030</orcidid><orcidid>https://orcid.org/0000-0003-4653-3964</orcidid><orcidid>https://orcid.org/0000-0001-9963-4318</orcidid><orcidid>https://orcid.org/0000-0003-4346-3497</orcidid><orcidid>https://orcid.org/0000-0003-0235-5596</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2024-04, Vol.16 (2), p.1-6 |
issn | 1943-0655 1943-0647 |
language | eng |
recordid | cdi_proquest_journals_2929267079 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Distributed feedback lasers Dual-mode Fiber lasers Frequency control Frequency drift Frequency stabilization Laser applications Laser feedback Laser mode locking laser noise Laser stability Lasers Locking Stability criteria Thermal stability |
title | A Balanced Dual-Intracavity Dual-Mode Interlocking Method for Fiber Laser Self-Reference Wavelength Stabilization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Balanced%20Dual-Intracavity%20Dual-Mode%20Interlocking%20Method%20for%20Fiber%20Laser%20Self-Reference%20Wavelength%20Stabilization&rft.jtitle=IEEE%20photonics%20journal&rft.au=Zhang,%20Liuxin&rft.date=2024-04-01&rft.volume=16&rft.issue=2&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1943-0655&rft.eissn=1943-0647&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2024.3360291&rft_dat=%3Cproquest_ieee_%3E2929267079%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929267079&rft_id=info:pmid/&rft_ieee_id=10416663&rft_doaj_id=oai_doaj_org_article_c90b0da35219459897680bf7225f3f48&rfr_iscdi=true |