PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios
For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classifi...
Gespeichert in:
Veröffentlicht in: | IEEE/ACM transactions on networking 2024-02, Vol.32 (1), p.506-519 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 519 |
---|---|
container_issue | 1 |
container_start_page | 506 |
container_title | IEEE/ACM transactions on networking |
container_volume | 32 |
creator | Liao, Zhengyu Qian, Shiyou Zheng, Zhonglong Zhang, Jiange Cao, Jian Xue, Guangtao Li, Minglu |
description | For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classification algorithm which achieves fast lookup and update. In this paper, we propose a novel structure, PT-Tree, for packet classification with high overall performance. PT-Tree cascades the prefixes of multiple discriminatory bytes to achieve efficient partitioning of the ruleset, thereby reducing the search space and ensuring the performance of both lookup and update. Meanwhile, a multi-granularity priority-aware pruning mechanism (MPPM) based on PT-Tree filters out most of the candidate subsets, which further improves the lookup speed. In addition, we propose an auxiliary tree-based optimization method (ATOM) to cope with severely overlapping rules in the search space. Therefore, PT-Tree can better handle the case where the rules in certain fields are skewed. We conduct comprehensive experiments to evaluate the performance of PT-Tree. The results show that compared with the state-of-the-art, the lookup time of PT-Tree is reduced by at least 49.95% on average. Moreover, PT-Tree is also at least 7.13x and 33x faster than the baselines in terms of the update and construction speed on average, respectively. Meanwhile, the performance stability of PT-Tree on multiple rulesets improves by up to 13.68 times. |
doi_str_mv | 10.1109/TNET.2023.3289029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2929267070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10171802</ieee_id><sourcerecordid>2929267070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-cdb6251f401bc1b4927f8c9d66ddff90f2aad7708fee43154aa5a95b116490dc3</originalsourceid><addsrcrecordid>eNpNkN9LwzAQgIMoOKd_gOBDwOfOu7RNG99GnT9g6MDuOaRpIplbO5MW3H9vy_Yg93AH990d9xFyizBDBPFQvi_KGQMWz2KWC2DijEwwTfOIpZyfDzXwOOJcsEtyFcIGAGNgfELWqzIqvTGPdE4LFbSqXfNFV95Y90vLfr81dGxT23q6UvrbdLTYqhCcdVp1rm2oa-jToVE7p-mnNo3yrg3X5MKqbTA3pzwl6-dFWbxGy4-Xt2K-jDRLeBfpuuIsRZsAVhqrRLDM5lrUnNe1tQIsU6rOMsitMUmMaaJUqkRaIfJEQK3jKbk_7t379qc3oZObtvfNcFIyMQTPIIOBwiOlfRvC8Jrce7dT_iAR5GhPjvbkaE-e7A0zd8cZZ4z5x2OG-cD9AdXoaq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929267070</pqid></control><display><type>article</type><title>PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Zhengyu ; Qian, Shiyou ; Zheng, Zhonglong ; Zhang, Jiange ; Cao, Jian ; Xue, Guangtao ; Li, Minglu</creator><creatorcontrib>Liao, Zhengyu ; Qian, Shiyou ; Zheng, Zhonglong ; Zhang, Jiange ; Cao, Jian ; Xue, Guangtao ; Li, Minglu</creatorcontrib><description>For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classification algorithm which achieves fast lookup and update. In this paper, we propose a novel structure, PT-Tree, for packet classification with high overall performance. PT-Tree cascades the prefixes of multiple discriminatory bytes to achieve efficient partitioning of the ruleset, thereby reducing the search space and ensuring the performance of both lookup and update. Meanwhile, a multi-granularity priority-aware pruning mechanism (MPPM) based on PT-Tree filters out most of the candidate subsets, which further improves the lookup speed. In addition, we propose an auxiliary tree-based optimization method (ATOM) to cope with severely overlapping rules in the search space. Therefore, PT-Tree can better handle the case where the rules in certain fields are skewed. We conduct comprehensive experiments to evaluate the performance of PT-Tree. The results show that compared with the state-of-the-art, the lookup time of PT-Tree is reduced by at least 49.95% on average. Moreover, PT-Tree is also at least 7.13x and 33x faster than the baselines in terms of the update and construction speed on average, respectively. Meanwhile, the performance stability of PT-Tree on multiple rulesets improves by up to 13.68 times.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2023.3289029</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Classification ; Classification algorithms ; Decision trees ; dynamic scenario ; high performance ; IEEE transactions ; Indexes ; IP networks ; Optimization methods ; Packet classification ; Performance evaluation ; Robustness ; SDN ; Software-defined networking</subject><ispartof>IEEE/ACM transactions on networking, 2024-02, Vol.32 (1), p.506-519</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-cdb6251f401bc1b4927f8c9d66ddff90f2aad7708fee43154aa5a95b116490dc3</cites><orcidid>0000-0002-0036-9436 ; 0000-0002-5271-9215 ; 0009-0004-4748-0782 ; 0000-0002-1617-3593 ; 0000-0001-7775-1740 ; 0000-0001-6547-3472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10171802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10171802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Zhengyu</creatorcontrib><creatorcontrib>Qian, Shiyou</creatorcontrib><creatorcontrib>Zheng, Zhonglong</creatorcontrib><creatorcontrib>Zhang, Jiange</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Xue, Guangtao</creatorcontrib><creatorcontrib>Li, Minglu</creatorcontrib><title>PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classification algorithm which achieves fast lookup and update. In this paper, we propose a novel structure, PT-Tree, for packet classification with high overall performance. PT-Tree cascades the prefixes of multiple discriminatory bytes to achieve efficient partitioning of the ruleset, thereby reducing the search space and ensuring the performance of both lookup and update. Meanwhile, a multi-granularity priority-aware pruning mechanism (MPPM) based on PT-Tree filters out most of the candidate subsets, which further improves the lookup speed. In addition, we propose an auxiliary tree-based optimization method (ATOM) to cope with severely overlapping rules in the search space. Therefore, PT-Tree can better handle the case where the rules in certain fields are skewed. We conduct comprehensive experiments to evaluate the performance of PT-Tree. The results show that compared with the state-of-the-art, the lookup time of PT-Tree is reduced by at least 49.95% on average. Moreover, PT-Tree is also at least 7.13x and 33x faster than the baselines in terms of the update and construction speed on average, respectively. Meanwhile, the performance stability of PT-Tree on multiple rulesets improves by up to 13.68 times.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Decision trees</subject><subject>dynamic scenario</subject><subject>high performance</subject><subject>IEEE transactions</subject><subject>Indexes</subject><subject>IP networks</subject><subject>Optimization methods</subject><subject>Packet classification</subject><subject>Performance evaluation</subject><subject>Robustness</subject><subject>SDN</subject><subject>Software-defined networking</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQgIMoOKd_gOBDwOfOu7RNG99GnT9g6MDuOaRpIplbO5MW3H9vy_Yg93AH990d9xFyizBDBPFQvi_KGQMWz2KWC2DijEwwTfOIpZyfDzXwOOJcsEtyFcIGAGNgfELWqzIqvTGPdE4LFbSqXfNFV95Y90vLfr81dGxT23q6UvrbdLTYqhCcdVp1rm2oa-jToVE7p-mnNo3yrg3X5MKqbTA3pzwl6-dFWbxGy4-Xt2K-jDRLeBfpuuIsRZsAVhqrRLDM5lrUnNe1tQIsU6rOMsitMUmMaaJUqkRaIfJEQK3jKbk_7t379qc3oZObtvfNcFIyMQTPIIOBwiOlfRvC8Jrce7dT_iAR5GhPjvbkaE-e7A0zd8cZZ4z5x2OG-cD9AdXoaq0</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Liao, Zhengyu</creator><creator>Qian, Shiyou</creator><creator>Zheng, Zhonglong</creator><creator>Zhang, Jiange</creator><creator>Cao, Jian</creator><creator>Xue, Guangtao</creator><creator>Li, Minglu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0036-9436</orcidid><orcidid>https://orcid.org/0000-0002-5271-9215</orcidid><orcidid>https://orcid.org/0009-0004-4748-0782</orcidid><orcidid>https://orcid.org/0000-0002-1617-3593</orcidid><orcidid>https://orcid.org/0000-0001-7775-1740</orcidid><orcidid>https://orcid.org/0000-0001-6547-3472</orcidid></search><sort><creationdate>202402</creationdate><title>PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios</title><author>Liao, Zhengyu ; Qian, Shiyou ; Zheng, Zhonglong ; Zhang, Jiange ; Cao, Jian ; Xue, Guangtao ; Li, Minglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-cdb6251f401bc1b4927f8c9d66ddff90f2aad7708fee43154aa5a95b116490dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Decision trees</topic><topic>dynamic scenario</topic><topic>high performance</topic><topic>IEEE transactions</topic><topic>Indexes</topic><topic>IP networks</topic><topic>Optimization methods</topic><topic>Packet classification</topic><topic>Performance evaluation</topic><topic>Robustness</topic><topic>SDN</topic><topic>Software-defined networking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Zhengyu</creatorcontrib><creatorcontrib>Qian, Shiyou</creatorcontrib><creatorcontrib>Zheng, Zhonglong</creatorcontrib><creatorcontrib>Zhang, Jiange</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Xue, Guangtao</creatorcontrib><creatorcontrib>Li, Minglu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Zhengyu</au><au>Qian, Shiyou</au><au>Zheng, Zhonglong</au><au>Zhang, Jiange</au><au>Cao, Jian</au><au>Xue, Guangtao</au><au>Li, Minglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2024-02</date><risdate>2024</risdate><volume>32</volume><issue>1</issue><spage>506</spage><epage>519</epage><pages>506-519</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classification algorithm which achieves fast lookup and update. In this paper, we propose a novel structure, PT-Tree, for packet classification with high overall performance. PT-Tree cascades the prefixes of multiple discriminatory bytes to achieve efficient partitioning of the ruleset, thereby reducing the search space and ensuring the performance of both lookup and update. Meanwhile, a multi-granularity priority-aware pruning mechanism (MPPM) based on PT-Tree filters out most of the candidate subsets, which further improves the lookup speed. In addition, we propose an auxiliary tree-based optimization method (ATOM) to cope with severely overlapping rules in the search space. Therefore, PT-Tree can better handle the case where the rules in certain fields are skewed. We conduct comprehensive experiments to evaluate the performance of PT-Tree. The results show that compared with the state-of-the-art, the lookup time of PT-Tree is reduced by at least 49.95% on average. Moreover, PT-Tree is also at least 7.13x and 33x faster than the baselines in terms of the update and construction speed on average, respectively. Meanwhile, the performance stability of PT-Tree on multiple rulesets improves by up to 13.68 times.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2023.3289029</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0036-9436</orcidid><orcidid>https://orcid.org/0000-0002-5271-9215</orcidid><orcidid>https://orcid.org/0009-0004-4748-0782</orcidid><orcidid>https://orcid.org/0000-0002-1617-3593</orcidid><orcidid>https://orcid.org/0000-0001-7775-1740</orcidid><orcidid>https://orcid.org/0000-0001-6547-3472</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2024-02, Vol.32 (1), p.506-519 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_proquest_journals_2929267070 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Classification Classification algorithms Decision trees dynamic scenario high performance IEEE transactions Indexes IP networks Optimization methods Packet classification Performance evaluation Robustness SDN Software-defined networking |
title | PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PT-Tree:%20A%20Cascading%20Prefix%20Tuple%20Tree%20for%20Packet%20Classification%20in%20Dynamic%20Scenarios&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Liao,%20Zhengyu&rft.date=2024-02&rft.volume=32&rft.issue=1&rft.spage=506&rft.epage=519&rft.pages=506-519&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2023.3289029&rft_dat=%3Cproquest_RIE%3E2929267070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929267070&rft_id=info:pmid/&rft_ieee_id=10171802&rfr_iscdi=true |