PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios

For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on networking 2024-02, Vol.32 (1), p.506-519
Hauptverfasser: Liao, Zhengyu, Qian, Shiyou, Zheng, Zhonglong, Zhang, Jiange, Cao, Jian, Xue, Guangtao, Li, Minglu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 519
container_issue 1
container_start_page 506
container_title IEEE/ACM transactions on networking
container_volume 32
creator Liao, Zhengyu
Qian, Shiyou
Zheng, Zhonglong
Zhang, Jiange
Cao, Jian
Xue, Guangtao
Li, Minglu
description For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classification algorithm which achieves fast lookup and update. In this paper, we propose a novel structure, PT-Tree, for packet classification with high overall performance. PT-Tree cascades the prefixes of multiple discriminatory bytes to achieve efficient partitioning of the ruleset, thereby reducing the search space and ensuring the performance of both lookup and update. Meanwhile, a multi-granularity priority-aware pruning mechanism (MPPM) based on PT-Tree filters out most of the candidate subsets, which further improves the lookup speed. In addition, we propose an auxiliary tree-based optimization method (ATOM) to cope with severely overlapping rules in the search space. Therefore, PT-Tree can better handle the case where the rules in certain fields are skewed. We conduct comprehensive experiments to evaluate the performance of PT-Tree. The results show that compared with the state-of-the-art, the lookup time of PT-Tree is reduced by at least 49.95% on average. Moreover, PT-Tree is also at least 7.13x and 33x faster than the baselines in terms of the update and construction speed on average, respectively. Meanwhile, the performance stability of PT-Tree on multiple rulesets improves by up to 13.68 times.
doi_str_mv 10.1109/TNET.2023.3289029
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2929267070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10171802</ieee_id><sourcerecordid>2929267070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-cdb6251f401bc1b4927f8c9d66ddff90f2aad7708fee43154aa5a95b116490dc3</originalsourceid><addsrcrecordid>eNpNkN9LwzAQgIMoOKd_gOBDwOfOu7RNG99GnT9g6MDuOaRpIplbO5MW3H9vy_Yg93AH990d9xFyizBDBPFQvi_KGQMWz2KWC2DijEwwTfOIpZyfDzXwOOJcsEtyFcIGAGNgfELWqzIqvTGPdE4LFbSqXfNFV95Y90vLfr81dGxT23q6UvrbdLTYqhCcdVp1rm2oa-jToVE7p-mnNo3yrg3X5MKqbTA3pzwl6-dFWbxGy4-Xt2K-jDRLeBfpuuIsRZsAVhqrRLDM5lrUnNe1tQIsU6rOMsitMUmMaaJUqkRaIfJEQK3jKbk_7t379qc3oZObtvfNcFIyMQTPIIOBwiOlfRvC8Jrce7dT_iAR5GhPjvbkaE-e7A0zd8cZZ4z5x2OG-cD9AdXoaq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929267070</pqid></control><display><type>article</type><title>PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Zhengyu ; Qian, Shiyou ; Zheng, Zhonglong ; Zhang, Jiange ; Cao, Jian ; Xue, Guangtao ; Li, Minglu</creator><creatorcontrib>Liao, Zhengyu ; Qian, Shiyou ; Zheng, Zhonglong ; Zhang, Jiange ; Cao, Jian ; Xue, Guangtao ; Li, Minglu</creatorcontrib><description>For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classification algorithm which achieves fast lookup and update. In this paper, we propose a novel structure, PT-Tree, for packet classification with high overall performance. PT-Tree cascades the prefixes of multiple discriminatory bytes to achieve efficient partitioning of the ruleset, thereby reducing the search space and ensuring the performance of both lookup and update. Meanwhile, a multi-granularity priority-aware pruning mechanism (MPPM) based on PT-Tree filters out most of the candidate subsets, which further improves the lookup speed. In addition, we propose an auxiliary tree-based optimization method (ATOM) to cope with severely overlapping rules in the search space. Therefore, PT-Tree can better handle the case where the rules in certain fields are skewed. We conduct comprehensive experiments to evaluate the performance of PT-Tree. The results show that compared with the state-of-the-art, the lookup time of PT-Tree is reduced by at least 49.95% on average. Moreover, PT-Tree is also at least 7.13x and 33x faster than the baselines in terms of the update and construction speed on average, respectively. Meanwhile, the performance stability of PT-Tree on multiple rulesets improves by up to 13.68 times.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2023.3289029</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Classification ; Classification algorithms ; Decision trees ; dynamic scenario ; high performance ; IEEE transactions ; Indexes ; IP networks ; Optimization methods ; Packet classification ; Performance evaluation ; Robustness ; SDN ; Software-defined networking</subject><ispartof>IEEE/ACM transactions on networking, 2024-02, Vol.32 (1), p.506-519</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-cdb6251f401bc1b4927f8c9d66ddff90f2aad7708fee43154aa5a95b116490dc3</cites><orcidid>0000-0002-0036-9436 ; 0000-0002-5271-9215 ; 0009-0004-4748-0782 ; 0000-0002-1617-3593 ; 0000-0001-7775-1740 ; 0000-0001-6547-3472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10171802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10171802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Zhengyu</creatorcontrib><creatorcontrib>Qian, Shiyou</creatorcontrib><creatorcontrib>Zheng, Zhonglong</creatorcontrib><creatorcontrib>Zhang, Jiange</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Xue, Guangtao</creatorcontrib><creatorcontrib>Li, Minglu</creatorcontrib><title>PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classification algorithm which achieves fast lookup and update. In this paper, we propose a novel structure, PT-Tree, for packet classification with high overall performance. PT-Tree cascades the prefixes of multiple discriminatory bytes to achieve efficient partitioning of the ruleset, thereby reducing the search space and ensuring the performance of both lookup and update. Meanwhile, a multi-granularity priority-aware pruning mechanism (MPPM) based on PT-Tree filters out most of the candidate subsets, which further improves the lookup speed. In addition, we propose an auxiliary tree-based optimization method (ATOM) to cope with severely overlapping rules in the search space. Therefore, PT-Tree can better handle the case where the rules in certain fields are skewed. We conduct comprehensive experiments to evaluate the performance of PT-Tree. The results show that compared with the state-of-the-art, the lookup time of PT-Tree is reduced by at least 49.95% on average. Moreover, PT-Tree is also at least 7.13x and 33x faster than the baselines in terms of the update and construction speed on average, respectively. Meanwhile, the performance stability of PT-Tree on multiple rulesets improves by up to 13.68 times.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Decision trees</subject><subject>dynamic scenario</subject><subject>high performance</subject><subject>IEEE transactions</subject><subject>Indexes</subject><subject>IP networks</subject><subject>Optimization methods</subject><subject>Packet classification</subject><subject>Performance evaluation</subject><subject>Robustness</subject><subject>SDN</subject><subject>Software-defined networking</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkN9LwzAQgIMoOKd_gOBDwOfOu7RNG99GnT9g6MDuOaRpIplbO5MW3H9vy_Yg93AH990d9xFyizBDBPFQvi_KGQMWz2KWC2DijEwwTfOIpZyfDzXwOOJcsEtyFcIGAGNgfELWqzIqvTGPdE4LFbSqXfNFV95Y90vLfr81dGxT23q6UvrbdLTYqhCcdVp1rm2oa-jToVE7p-mnNo3yrg3X5MKqbTA3pzwl6-dFWbxGy4-Xt2K-jDRLeBfpuuIsRZsAVhqrRLDM5lrUnNe1tQIsU6rOMsitMUmMaaJUqkRaIfJEQK3jKbk_7t379qc3oZObtvfNcFIyMQTPIIOBwiOlfRvC8Jrce7dT_iAR5GhPjvbkaE-e7A0zd8cZZ4z5x2OG-cD9AdXoaq0</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Liao, Zhengyu</creator><creator>Qian, Shiyou</creator><creator>Zheng, Zhonglong</creator><creator>Zhang, Jiange</creator><creator>Cao, Jian</creator><creator>Xue, Guangtao</creator><creator>Li, Minglu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0036-9436</orcidid><orcidid>https://orcid.org/0000-0002-5271-9215</orcidid><orcidid>https://orcid.org/0009-0004-4748-0782</orcidid><orcidid>https://orcid.org/0000-0002-1617-3593</orcidid><orcidid>https://orcid.org/0000-0001-7775-1740</orcidid><orcidid>https://orcid.org/0000-0001-6547-3472</orcidid></search><sort><creationdate>202402</creationdate><title>PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios</title><author>Liao, Zhengyu ; Qian, Shiyou ; Zheng, Zhonglong ; Zhang, Jiange ; Cao, Jian ; Xue, Guangtao ; Li, Minglu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-cdb6251f401bc1b4927f8c9d66ddff90f2aad7708fee43154aa5a95b116490dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Decision trees</topic><topic>dynamic scenario</topic><topic>high performance</topic><topic>IEEE transactions</topic><topic>Indexes</topic><topic>IP networks</topic><topic>Optimization methods</topic><topic>Packet classification</topic><topic>Performance evaluation</topic><topic>Robustness</topic><topic>SDN</topic><topic>Software-defined networking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Zhengyu</creatorcontrib><creatorcontrib>Qian, Shiyou</creatorcontrib><creatorcontrib>Zheng, Zhonglong</creatorcontrib><creatorcontrib>Zhang, Jiange</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Xue, Guangtao</creatorcontrib><creatorcontrib>Li, Minglu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Zhengyu</au><au>Qian, Shiyou</au><au>Zheng, Zhonglong</au><au>Zhang, Jiange</au><au>Cao, Jian</au><au>Xue, Guangtao</au><au>Li, Minglu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2024-02</date><risdate>2024</risdate><volume>32</volume><issue>1</issue><spage>506</spage><epage>519</epage><pages>506-519</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>For software-defined networking (SDN), multi-field packet classification plays a key role in the processing of flows, mainly involving fast packet classification and dynamic rule updates. Due to the increasing complexity and size of rulesets, it is becoming more difficult to design a packet classification algorithm which achieves fast lookup and update. In this paper, we propose a novel structure, PT-Tree, for packet classification with high overall performance. PT-Tree cascades the prefixes of multiple discriminatory bytes to achieve efficient partitioning of the ruleset, thereby reducing the search space and ensuring the performance of both lookup and update. Meanwhile, a multi-granularity priority-aware pruning mechanism (MPPM) based on PT-Tree filters out most of the candidate subsets, which further improves the lookup speed. In addition, we propose an auxiliary tree-based optimization method (ATOM) to cope with severely overlapping rules in the search space. Therefore, PT-Tree can better handle the case where the rules in certain fields are skewed. We conduct comprehensive experiments to evaluate the performance of PT-Tree. The results show that compared with the state-of-the-art, the lookup time of PT-Tree is reduced by at least 49.95% on average. Moreover, PT-Tree is also at least 7.13x and 33x faster than the baselines in terms of the update and construction speed on average, respectively. Meanwhile, the performance stability of PT-Tree on multiple rulesets improves by up to 13.68 times.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2023.3289029</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0036-9436</orcidid><orcidid>https://orcid.org/0000-0002-5271-9215</orcidid><orcidid>https://orcid.org/0009-0004-4748-0782</orcidid><orcidid>https://orcid.org/0000-0002-1617-3593</orcidid><orcidid>https://orcid.org/0000-0001-7775-1740</orcidid><orcidid>https://orcid.org/0000-0001-6547-3472</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2024-02, Vol.32 (1), p.506-519
issn 1063-6692
1558-2566
language eng
recordid cdi_proquest_journals_2929267070
source IEEE Electronic Library (IEL)
subjects Algorithms
Classification
Classification algorithms
Decision trees
dynamic scenario
high performance
IEEE transactions
Indexes
IP networks
Optimization methods
Packet classification
Performance evaluation
Robustness
SDN
Software-defined networking
title PT-Tree: A Cascading Prefix Tuple Tree for Packet Classification in Dynamic Scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PT-Tree:%20A%20Cascading%20Prefix%20Tuple%20Tree%20for%20Packet%20Classification%20in%20Dynamic%20Scenarios&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Liao,%20Zhengyu&rft.date=2024-02&rft.volume=32&rft.issue=1&rft.spage=506&rft.epage=519&rft.pages=506-519&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2023.3289029&rft_dat=%3Cproquest_RIE%3E2929267070%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929267070&rft_id=info:pmid/&rft_ieee_id=10171802&rfr_iscdi=true