Graspability-Aware Object Pose Estimation in Cluttered Scenes
Object recognition and pose estimation are critical components in autonomous robot manipulation systems, playing a crucial role in enabling robots to interact effectively with the environment. During actual execution, the robot must recognize the object in the current scene, estimate its pose, and t...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2024-04, Vol.9 (4), p.3124-3130 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3130 |
---|---|
container_issue | 4 |
container_start_page | 3124 |
container_title | IEEE robotics and automation letters |
container_volume | 9 |
creator | Hoang, Dinh-Cuong Nguyen, Anh-Nhat Vu, Van-Duc Nguyen, Thu-Uyen Vu, Duy-Quang Ngo, Phuc-Quan Hoang, Ngoc-Anh Phan, Khanh-Toan Tran, Duc-Thanh Nguyen, Van-Thiep Duong, Quang-Tri Ho, Ngoc-Trung Tran, Cong-Trinh Duong, Van-Hiep Mai, Anh-Truong |
description | Object recognition and pose estimation are critical components in autonomous robot manipulation systems, playing a crucial role in enabling robots to interact effectively with the environment. During actual execution, the robot must recognize the object in the current scene, estimate its pose, and then select a feasible grasp pose from the pre-defined grasp configurations. While most existing methods primarily focus on pose estimation, they often neglect the graspability and reachability aspects. This oversight can lead to inefficiencies and failures during execution. In this study, we introduce an innovative graspability-aware object pose estimation framework. Our proposed approach not only estimates the poses of multiple objects in clustered scenes but also identifies graspable areas. This enables the system to concentrate its efforts on specific points or regions of an object that are suitable for grasping. It leverages both depth and color images to extract geometric and appearance features. To effectively combine these diverse features, we have developed an adaptive fusion module. In addition, the fused features are further enhanced through a graspability-aware feature enhancement module. The key innovation of our method lies in improving the discriminability and robustness of the features used for object pose estimation. We have achieved state-of-the-art results on public datasets when compared to several baseline methods. In real robot experiments conducted on a Franka Emika robot arm equipped with an Intel Realsense camera and a two-finger gripper, we consistently achieved high success rates, even in cluttered scenes. |
doi_str_mv | 10.1109/LRA.2024.3364451 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2929259663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10430220</ieee_id><sourcerecordid>2929259663</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-4a5081218874cb6d98d227972db529b4f7e7c860a109312d85ca5adf5328b9463</originalsourceid><addsrcrecordid>eNpNkL1rwzAQxUVpoSHN3qGDobNT6fRlDR1CSNNCIKUfs5DlMzikdioplPz3VUiGTHfDe_fu_Qi5Z3TKGDVPq4_ZFCiIKedKCMmuyAi41iXXSl1f7LdkEuOGUsokaG7kiDwvg4s7V3fbLh3K2Z8LWKzrDfpUvA8Ri0VM3Y9L3dAXXV_Mt_uUMGBTfHrsMd6Rm9ZtI07Oc0y-XxZf89dytV6-zWer0oOBVAonacWAVZUWvlaNqRoAbTQ0tQRTi1aj9pWiLnfhDJpKeidd00oOVW2E4mPyeLq7C8PvHmOym2Ef-hxpc4ABaZTiWUVPKh-GGAO2dhfy8-FgGbVHTjZzskdO9swpWx5Olg4RL-SCUwDK_wHWdWGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929259663</pqid></control><display><type>article</type><title>Graspability-Aware Object Pose Estimation in Cluttered Scenes</title><source>IEEE Electronic Library (IEL)</source><creator>Hoang, Dinh-Cuong ; Nguyen, Anh-Nhat ; Vu, Van-Duc ; Nguyen, Thu-Uyen ; Vu, Duy-Quang ; Ngo, Phuc-Quan ; Hoang, Ngoc-Anh ; Phan, Khanh-Toan ; Tran, Duc-Thanh ; Nguyen, Van-Thiep ; Duong, Quang-Tri ; Ho, Ngoc-Trung ; Tran, Cong-Trinh ; Duong, Van-Hiep ; Mai, Anh-Truong</creator><creatorcontrib>Hoang, Dinh-Cuong ; Nguyen, Anh-Nhat ; Vu, Van-Duc ; Nguyen, Thu-Uyen ; Vu, Duy-Quang ; Ngo, Phuc-Quan ; Hoang, Ngoc-Anh ; Phan, Khanh-Toan ; Tran, Duc-Thanh ; Nguyen, Van-Thiep ; Duong, Quang-Tri ; Ho, Ngoc-Trung ; Tran, Cong-Trinh ; Duong, Van-Hiep ; Mai, Anh-Truong</creatorcontrib><description>Object recognition and pose estimation are critical components in autonomous robot manipulation systems, playing a crucial role in enabling robots to interact effectively with the environment. During actual execution, the robot must recognize the object in the current scene, estimate its pose, and then select a feasible grasp pose from the pre-defined grasp configurations. While most existing methods primarily focus on pose estimation, they often neglect the graspability and reachability aspects. This oversight can lead to inefficiencies and failures during execution. In this study, we introduce an innovative graspability-aware object pose estimation framework. Our proposed approach not only estimates the poses of multiple objects in clustered scenes but also identifies graspable areas. This enables the system to concentrate its efforts on specific points or regions of an object that are suitable for grasping. It leverages both depth and color images to extract geometric and appearance features. To effectively combine these diverse features, we have developed an adaptive fusion module. In addition, the fused features are further enhanced through a graspability-aware feature enhancement module. The key innovation of our method lies in improving the discriminability and robustness of the features used for object pose estimation. We have achieved state-of-the-art results on public datasets when compared to several baseline methods. In real robot experiments conducted on a Franka Emika robot arm equipped with an Intel Realsense camera and a two-finger gripper, we consistently achieved high success rates, even in cluttered scenes.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2024.3364451</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>6D object pose estimation ; Color imagery ; Critical components ; Feature extraction ; Fingers ; Geometry ; grasp detection ; Modules ; Object recognition ; Point cloud compression ; Pose estimation ; Robot arms ; robot manipulation ; Robot sensing systems ; Robots ; Solid modeling ; System effectiveness ; Three-dimensional displays</subject><ispartof>IEEE robotics and automation letters, 2024-04, Vol.9 (4), p.3124-3130</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-4a5081218874cb6d98d227972db529b4f7e7c860a109312d85ca5adf5328b9463</citedby><cites>FETCH-LOGICAL-c292t-4a5081218874cb6d98d227972db529b4f7e7c860a109312d85ca5adf5328b9463</cites><orcidid>0009-0003-1231-8251 ; 0009-0009-4006-4352 ; 0009-0003-7045-3355 ; 0009-0001-2469-0961 ; 0009-0001-0689-1292 ; 0009-0007-7122-7148 ; 0009-0006-3800-3014 ; 0009-0002-7775-0021 ; 0009-0008-8349-454X ; 0009-0003-3878-2984 ; 0009-0005-2050-6396 ; 0009-0009-2314-0560 ; 0000-0001-6058-2426 ; 0009-0006-6378-8052 ; 0009-0006-0558-8298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10430220$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10430220$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoang, Dinh-Cuong</creatorcontrib><creatorcontrib>Nguyen, Anh-Nhat</creatorcontrib><creatorcontrib>Vu, Van-Duc</creatorcontrib><creatorcontrib>Nguyen, Thu-Uyen</creatorcontrib><creatorcontrib>Vu, Duy-Quang</creatorcontrib><creatorcontrib>Ngo, Phuc-Quan</creatorcontrib><creatorcontrib>Hoang, Ngoc-Anh</creatorcontrib><creatorcontrib>Phan, Khanh-Toan</creatorcontrib><creatorcontrib>Tran, Duc-Thanh</creatorcontrib><creatorcontrib>Nguyen, Van-Thiep</creatorcontrib><creatorcontrib>Duong, Quang-Tri</creatorcontrib><creatorcontrib>Ho, Ngoc-Trung</creatorcontrib><creatorcontrib>Tran, Cong-Trinh</creatorcontrib><creatorcontrib>Duong, Van-Hiep</creatorcontrib><creatorcontrib>Mai, Anh-Truong</creatorcontrib><title>Graspability-Aware Object Pose Estimation in Cluttered Scenes</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Object recognition and pose estimation are critical components in autonomous robot manipulation systems, playing a crucial role in enabling robots to interact effectively with the environment. During actual execution, the robot must recognize the object in the current scene, estimate its pose, and then select a feasible grasp pose from the pre-defined grasp configurations. While most existing methods primarily focus on pose estimation, they often neglect the graspability and reachability aspects. This oversight can lead to inefficiencies and failures during execution. In this study, we introduce an innovative graspability-aware object pose estimation framework. Our proposed approach not only estimates the poses of multiple objects in clustered scenes but also identifies graspable areas. This enables the system to concentrate its efforts on specific points or regions of an object that are suitable for grasping. It leverages both depth and color images to extract geometric and appearance features. To effectively combine these diverse features, we have developed an adaptive fusion module. In addition, the fused features are further enhanced through a graspability-aware feature enhancement module. The key innovation of our method lies in improving the discriminability and robustness of the features used for object pose estimation. We have achieved state-of-the-art results on public datasets when compared to several baseline methods. In real robot experiments conducted on a Franka Emika robot arm equipped with an Intel Realsense camera and a two-finger gripper, we consistently achieved high success rates, even in cluttered scenes.</description><subject>6D object pose estimation</subject><subject>Color imagery</subject><subject>Critical components</subject><subject>Feature extraction</subject><subject>Fingers</subject><subject>Geometry</subject><subject>grasp detection</subject><subject>Modules</subject><subject>Object recognition</subject><subject>Point cloud compression</subject><subject>Pose estimation</subject><subject>Robot arms</subject><subject>robot manipulation</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Solid modeling</subject><subject>System effectiveness</subject><subject>Three-dimensional displays</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1rwzAQxUVpoSHN3qGDobNT6fRlDR1CSNNCIKUfs5DlMzikdioplPz3VUiGTHfDe_fu_Qi5Z3TKGDVPq4_ZFCiIKedKCMmuyAi41iXXSl1f7LdkEuOGUsokaG7kiDwvg4s7V3fbLh3K2Z8LWKzrDfpUvA8Ri0VM3Y9L3dAXXV_Mt_uUMGBTfHrsMd6Rm9ZtI07Oc0y-XxZf89dytV6-zWer0oOBVAonacWAVZUWvlaNqRoAbTQ0tQRTi1aj9pWiLnfhDJpKeidd00oOVW2E4mPyeLq7C8PvHmOym2Ef-hxpc4ABaZTiWUVPKh-GGAO2dhfy8-FgGbVHTjZzskdO9swpWx5Olg4RL-SCUwDK_wHWdWGA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Hoang, Dinh-Cuong</creator><creator>Nguyen, Anh-Nhat</creator><creator>Vu, Van-Duc</creator><creator>Nguyen, Thu-Uyen</creator><creator>Vu, Duy-Quang</creator><creator>Ngo, Phuc-Quan</creator><creator>Hoang, Ngoc-Anh</creator><creator>Phan, Khanh-Toan</creator><creator>Tran, Duc-Thanh</creator><creator>Nguyen, Van-Thiep</creator><creator>Duong, Quang-Tri</creator><creator>Ho, Ngoc-Trung</creator><creator>Tran, Cong-Trinh</creator><creator>Duong, Van-Hiep</creator><creator>Mai, Anh-Truong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0009-0003-1231-8251</orcidid><orcidid>https://orcid.org/0009-0009-4006-4352</orcidid><orcidid>https://orcid.org/0009-0003-7045-3355</orcidid><orcidid>https://orcid.org/0009-0001-2469-0961</orcidid><orcidid>https://orcid.org/0009-0001-0689-1292</orcidid><orcidid>https://orcid.org/0009-0007-7122-7148</orcidid><orcidid>https://orcid.org/0009-0006-3800-3014</orcidid><orcidid>https://orcid.org/0009-0002-7775-0021</orcidid><orcidid>https://orcid.org/0009-0008-8349-454X</orcidid><orcidid>https://orcid.org/0009-0003-3878-2984</orcidid><orcidid>https://orcid.org/0009-0005-2050-6396</orcidid><orcidid>https://orcid.org/0009-0009-2314-0560</orcidid><orcidid>https://orcid.org/0000-0001-6058-2426</orcidid><orcidid>https://orcid.org/0009-0006-6378-8052</orcidid><orcidid>https://orcid.org/0009-0006-0558-8298</orcidid></search><sort><creationdate>20240401</creationdate><title>Graspability-Aware Object Pose Estimation in Cluttered Scenes</title><author>Hoang, Dinh-Cuong ; Nguyen, Anh-Nhat ; Vu, Van-Duc ; Nguyen, Thu-Uyen ; Vu, Duy-Quang ; Ngo, Phuc-Quan ; Hoang, Ngoc-Anh ; Phan, Khanh-Toan ; Tran, Duc-Thanh ; Nguyen, Van-Thiep ; Duong, Quang-Tri ; Ho, Ngoc-Trung ; Tran, Cong-Trinh ; Duong, Van-Hiep ; Mai, Anh-Truong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-4a5081218874cb6d98d227972db529b4f7e7c860a109312d85ca5adf5328b9463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>6D object pose estimation</topic><topic>Color imagery</topic><topic>Critical components</topic><topic>Feature extraction</topic><topic>Fingers</topic><topic>Geometry</topic><topic>grasp detection</topic><topic>Modules</topic><topic>Object recognition</topic><topic>Point cloud compression</topic><topic>Pose estimation</topic><topic>Robot arms</topic><topic>robot manipulation</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Solid modeling</topic><topic>System effectiveness</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoang, Dinh-Cuong</creatorcontrib><creatorcontrib>Nguyen, Anh-Nhat</creatorcontrib><creatorcontrib>Vu, Van-Duc</creatorcontrib><creatorcontrib>Nguyen, Thu-Uyen</creatorcontrib><creatorcontrib>Vu, Duy-Quang</creatorcontrib><creatorcontrib>Ngo, Phuc-Quan</creatorcontrib><creatorcontrib>Hoang, Ngoc-Anh</creatorcontrib><creatorcontrib>Phan, Khanh-Toan</creatorcontrib><creatorcontrib>Tran, Duc-Thanh</creatorcontrib><creatorcontrib>Nguyen, Van-Thiep</creatorcontrib><creatorcontrib>Duong, Quang-Tri</creatorcontrib><creatorcontrib>Ho, Ngoc-Trung</creatorcontrib><creatorcontrib>Tran, Cong-Trinh</creatorcontrib><creatorcontrib>Duong, Van-Hiep</creatorcontrib><creatorcontrib>Mai, Anh-Truong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoang, Dinh-Cuong</au><au>Nguyen, Anh-Nhat</au><au>Vu, Van-Duc</au><au>Nguyen, Thu-Uyen</au><au>Vu, Duy-Quang</au><au>Ngo, Phuc-Quan</au><au>Hoang, Ngoc-Anh</au><au>Phan, Khanh-Toan</au><au>Tran, Duc-Thanh</au><au>Nguyen, Van-Thiep</au><au>Duong, Quang-Tri</au><au>Ho, Ngoc-Trung</au><au>Tran, Cong-Trinh</au><au>Duong, Van-Hiep</au><au>Mai, Anh-Truong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graspability-Aware Object Pose Estimation in Cluttered Scenes</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>9</volume><issue>4</issue><spage>3124</spage><epage>3130</epage><pages>3124-3130</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Object recognition and pose estimation are critical components in autonomous robot manipulation systems, playing a crucial role in enabling robots to interact effectively with the environment. During actual execution, the robot must recognize the object in the current scene, estimate its pose, and then select a feasible grasp pose from the pre-defined grasp configurations. While most existing methods primarily focus on pose estimation, they often neglect the graspability and reachability aspects. This oversight can lead to inefficiencies and failures during execution. In this study, we introduce an innovative graspability-aware object pose estimation framework. Our proposed approach not only estimates the poses of multiple objects in clustered scenes but also identifies graspable areas. This enables the system to concentrate its efforts on specific points or regions of an object that are suitable for grasping. It leverages both depth and color images to extract geometric and appearance features. To effectively combine these diverse features, we have developed an adaptive fusion module. In addition, the fused features are further enhanced through a graspability-aware feature enhancement module. The key innovation of our method lies in improving the discriminability and robustness of the features used for object pose estimation. We have achieved state-of-the-art results on public datasets when compared to several baseline methods. In real robot experiments conducted on a Franka Emika robot arm equipped with an Intel Realsense camera and a two-finger gripper, we consistently achieved high success rates, even in cluttered scenes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2024.3364451</doi><tpages>7</tpages><orcidid>https://orcid.org/0009-0003-1231-8251</orcidid><orcidid>https://orcid.org/0009-0009-4006-4352</orcidid><orcidid>https://orcid.org/0009-0003-7045-3355</orcidid><orcidid>https://orcid.org/0009-0001-2469-0961</orcidid><orcidid>https://orcid.org/0009-0001-0689-1292</orcidid><orcidid>https://orcid.org/0009-0007-7122-7148</orcidid><orcidid>https://orcid.org/0009-0006-3800-3014</orcidid><orcidid>https://orcid.org/0009-0002-7775-0021</orcidid><orcidid>https://orcid.org/0009-0008-8349-454X</orcidid><orcidid>https://orcid.org/0009-0003-3878-2984</orcidid><orcidid>https://orcid.org/0009-0005-2050-6396</orcidid><orcidid>https://orcid.org/0009-0009-2314-0560</orcidid><orcidid>https://orcid.org/0000-0001-6058-2426</orcidid><orcidid>https://orcid.org/0009-0006-6378-8052</orcidid><orcidid>https://orcid.org/0009-0006-0558-8298</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2024-04, Vol.9 (4), p.3124-3130 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2929259663 |
source | IEEE Electronic Library (IEL) |
subjects | 6D object pose estimation Color imagery Critical components Feature extraction Fingers Geometry grasp detection Modules Object recognition Point cloud compression Pose estimation Robot arms robot manipulation Robot sensing systems Robots Solid modeling System effectiveness Three-dimensional displays |
title | Graspability-Aware Object Pose Estimation in Cluttered Scenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graspability-Aware%20Object%20Pose%20Estimation%20in%20Cluttered%20Scenes&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Hoang,%20Dinh-Cuong&rft.date=2024-04-01&rft.volume=9&rft.issue=4&rft.spage=3124&rft.epage=3130&rft.pages=3124-3130&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2024.3364451&rft_dat=%3Cproquest_RIE%3E2929259663%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929259663&rft_id=info:pmid/&rft_ieee_id=10430220&rfr_iscdi=true |