MP-FedCL: Multiprototype Federated Contrastive Learning for Edge Intelligence
Federated learning-assisted edge intelligence enables privacy protection in modern intelligent services. However, not independent and identically distributed (non-IID) distribution among edge clients can impair the local model performance. The existing single prototype-based strategy represents a cl...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2024-03, Vol.11 (5), p.8604-8623 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8623 |
---|---|
container_issue | 5 |
container_start_page | 8604 |
container_title | IEEE internet of things journal |
container_volume | 11 |
creator | Qiao, Yu Munir, Md. Shirajum Adhikary, Apurba Le, Huy Q. Raha, Avi Deb Zhang, Chaoning Hong, Choong Seon |
description | Federated learning-assisted edge intelligence enables privacy protection in modern intelligent services. However, not independent and identically distributed (non-IID) distribution among edge clients can impair the local model performance. The existing single prototype-based strategy represents a class by using the mean of the feature space. However, feature spaces are usually not clustered, and a single prototype may not represent a class well. Motivated by this, this article proposes a multiprototype federated contrastive learning approach (MP-FedCL) which demonstrates the effectiveness of using a multiprototype strategy over a single-prototype under non-IID settings, including both label and feature skewness. Specifically, a multiprototype computation strategy based on k-means is first proposed to capture different embedding representations for each class space, using multiple prototypes [Formula Omitted] centroids) to represent a class in the embedding space. In each global round, the computed multiple prototypes and their respective model parameters are sent to the edge server for aggregation into a global prototype pool, which is then sent back to all clients to guide their local training. Finally, local training for each client minimizes their own supervised learning tasks and learns from shared prototypes in the global prototype pool through supervised contrastive learning, which encourages them to learn knowledge related to their own class from others and reduces the absorption of unrelated knowledge in each global iteration. Experimental results on MNIST, Digit-5, Office-10, and DomainNet show that our method outperforms multiple baselines, with an average test accuracy improvement of about 4.6% and 10.4% under feature and label non-IID distributions, respectively. |
doi_str_mv | 10.1109/JIOT.2023.3320250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2929257843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929257843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c225t-714fea4d9bcd64e52650e6dd80df499ed352a602c4c6ef5fa8d6649f475a87b33</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-AG8LnlP3f7LeJLRaSamHel622dmSEpO6uxX67U1oDzKHNwxv5g0_hB4pmVNK9PPHarOdM8L4nPNBJLlBE8ZZngml2O2__h7NYjwQQoY1SbWaoPX6M1uCK6sXvD61qTmGPvXpfAQ8TCHYBA6XfZeCjan5BVyBDV3T7bHvA164PeBVl6Btmz10NTygO2_bCLOrTtHXcrEt37Nq87YqX6usZkymLKfCgxVO72qnBEimJAHlXEGcF1qD45JZRVgtagVeels4pYT2Ipe2yHecT9HT5e7w7s8JYjKH_hS6IdIwPZTMCzG66MVVhz7GAN4cQ_Ntw9lQYkZwZgRnRnDmCo7_AX34YC0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929257843</pqid></control><display><type>article</type><title>MP-FedCL: Multiprototype Federated Contrastive Learning for Edge Intelligence</title><source>IEEE Electronic Library (IEL)</source><creator>Qiao, Yu ; Munir, Md. Shirajum ; Adhikary, Apurba ; Le, Huy Q. ; Raha, Avi Deb ; Zhang, Chaoning ; Hong, Choong Seon</creator><creatorcontrib>Qiao, Yu ; Munir, Md. Shirajum ; Adhikary, Apurba ; Le, Huy Q. ; Raha, Avi Deb ; Zhang, Chaoning ; Hong, Choong Seon</creatorcontrib><description>Federated learning-assisted edge intelligence enables privacy protection in modern intelligent services. However, not independent and identically distributed (non-IID) distribution among edge clients can impair the local model performance. The existing single prototype-based strategy represents a class by using the mean of the feature space. However, feature spaces are usually not clustered, and a single prototype may not represent a class well. Motivated by this, this article proposes a multiprototype federated contrastive learning approach (MP-FedCL) which demonstrates the effectiveness of using a multiprototype strategy over a single-prototype under non-IID settings, including both label and feature skewness. Specifically, a multiprototype computation strategy based on k-means is first proposed to capture different embedding representations for each class space, using multiple prototypes [Formula Omitted] centroids) to represent a class in the embedding space. In each global round, the computed multiple prototypes and their respective model parameters are sent to the edge server for aggregation into a global prototype pool, which is then sent back to all clients to guide their local training. Finally, local training for each client minimizes their own supervised learning tasks and learns from shared prototypes in the global prototype pool through supervised contrastive learning, which encourages them to learn knowledge related to their own class from others and reduces the absorption of unrelated knowledge in each global iteration. Experimental results on MNIST, Digit-5, Office-10, and DomainNet show that our method outperforms multiple baselines, with an average test accuracy improvement of about 4.6% and 10.4% under feature and label non-IID distributions, respectively.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3320250</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Centroids ; Clients ; Cognitive tasks ; Edge computing ; Embedding ; Intelligence ; Iterative methods ; Labels ; Prototypes ; Supervised learning</subject><ispartof>IEEE internet of things journal, 2024-03, Vol.11 (5), p.8604-8623</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c225t-714fea4d9bcd64e52650e6dd80df499ed352a602c4c6ef5fa8d6649f475a87b33</cites><orcidid>0000-0003-4045-8473 ; 0000-0003-3484-7333 ; 0009-0007-8342-7614 ; 0000-0003-3970-1878 ; 0000-0002-7255-1085</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Munir, Md. Shirajum</creatorcontrib><creatorcontrib>Adhikary, Apurba</creatorcontrib><creatorcontrib>Le, Huy Q.</creatorcontrib><creatorcontrib>Raha, Avi Deb</creatorcontrib><creatorcontrib>Zhang, Chaoning</creatorcontrib><creatorcontrib>Hong, Choong Seon</creatorcontrib><title>MP-FedCL: Multiprototype Federated Contrastive Learning for Edge Intelligence</title><title>IEEE internet of things journal</title><description>Federated learning-assisted edge intelligence enables privacy protection in modern intelligent services. However, not independent and identically distributed (non-IID) distribution among edge clients can impair the local model performance. The existing single prototype-based strategy represents a class by using the mean of the feature space. However, feature spaces are usually not clustered, and a single prototype may not represent a class well. Motivated by this, this article proposes a multiprototype federated contrastive learning approach (MP-FedCL) which demonstrates the effectiveness of using a multiprototype strategy over a single-prototype under non-IID settings, including both label and feature skewness. Specifically, a multiprototype computation strategy based on k-means is first proposed to capture different embedding representations for each class space, using multiple prototypes [Formula Omitted] centroids) to represent a class in the embedding space. In each global round, the computed multiple prototypes and their respective model parameters are sent to the edge server for aggregation into a global prototype pool, which is then sent back to all clients to guide their local training. Finally, local training for each client minimizes their own supervised learning tasks and learns from shared prototypes in the global prototype pool through supervised contrastive learning, which encourages them to learn knowledge related to their own class from others and reduces the absorption of unrelated knowledge in each global iteration. Experimental results on MNIST, Digit-5, Office-10, and DomainNet show that our method outperforms multiple baselines, with an average test accuracy improvement of about 4.6% and 10.4% under feature and label non-IID distributions, respectively.</description><subject>Centroids</subject><subject>Clients</subject><subject>Cognitive tasks</subject><subject>Edge computing</subject><subject>Embedding</subject><subject>Intelligence</subject><subject>Iterative methods</subject><subject>Labels</subject><subject>Prototypes</subject><subject>Supervised learning</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE9Lw0AQxRdRsNR-AG8LnlP3f7LeJLRaSamHel622dmSEpO6uxX67U1oDzKHNwxv5g0_hB4pmVNK9PPHarOdM8L4nPNBJLlBE8ZZngml2O2__h7NYjwQQoY1SbWaoPX6M1uCK6sXvD61qTmGPvXpfAQ8TCHYBA6XfZeCjan5BVyBDV3T7bHvA164PeBVl6Btmz10NTygO2_bCLOrTtHXcrEt37Nq87YqX6usZkymLKfCgxVO72qnBEimJAHlXEGcF1qD45JZRVgtagVeels4pYT2Ipe2yHecT9HT5e7w7s8JYjKH_hS6IdIwPZTMCzG66MVVhz7GAN4cQ_Ntw9lQYkZwZgRnRnDmCo7_AX34YC0</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Qiao, Yu</creator><creator>Munir, Md. Shirajum</creator><creator>Adhikary, Apurba</creator><creator>Le, Huy Q.</creator><creator>Raha, Avi Deb</creator><creator>Zhang, Chaoning</creator><creator>Hong, Choong Seon</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4045-8473</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid><orcidid>https://orcid.org/0009-0007-8342-7614</orcidid><orcidid>https://orcid.org/0000-0003-3970-1878</orcidid><orcidid>https://orcid.org/0000-0002-7255-1085</orcidid></search><sort><creationdate>20240301</creationdate><title>MP-FedCL: Multiprototype Federated Contrastive Learning for Edge Intelligence</title><author>Qiao, Yu ; Munir, Md. Shirajum ; Adhikary, Apurba ; Le, Huy Q. ; Raha, Avi Deb ; Zhang, Chaoning ; Hong, Choong Seon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c225t-714fea4d9bcd64e52650e6dd80df499ed352a602c4c6ef5fa8d6649f475a87b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Centroids</topic><topic>Clients</topic><topic>Cognitive tasks</topic><topic>Edge computing</topic><topic>Embedding</topic><topic>Intelligence</topic><topic>Iterative methods</topic><topic>Labels</topic><topic>Prototypes</topic><topic>Supervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Yu</creatorcontrib><creatorcontrib>Munir, Md. Shirajum</creatorcontrib><creatorcontrib>Adhikary, Apurba</creatorcontrib><creatorcontrib>Le, Huy Q.</creatorcontrib><creatorcontrib>Raha, Avi Deb</creatorcontrib><creatorcontrib>Zhang, Chaoning</creatorcontrib><creatorcontrib>Hong, Choong Seon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Yu</au><au>Munir, Md. Shirajum</au><au>Adhikary, Apurba</au><au>Le, Huy Q.</au><au>Raha, Avi Deb</au><au>Zhang, Chaoning</au><au>Hong, Choong Seon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MP-FedCL: Multiprototype Federated Contrastive Learning for Edge Intelligence</atitle><jtitle>IEEE internet of things journal</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>11</volume><issue>5</issue><spage>8604</spage><epage>8623</epage><pages>8604-8623</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><abstract>Federated learning-assisted edge intelligence enables privacy protection in modern intelligent services. However, not independent and identically distributed (non-IID) distribution among edge clients can impair the local model performance. The existing single prototype-based strategy represents a class by using the mean of the feature space. However, feature spaces are usually not clustered, and a single prototype may not represent a class well. Motivated by this, this article proposes a multiprototype federated contrastive learning approach (MP-FedCL) which demonstrates the effectiveness of using a multiprototype strategy over a single-prototype under non-IID settings, including both label and feature skewness. Specifically, a multiprototype computation strategy based on k-means is first proposed to capture different embedding representations for each class space, using multiple prototypes [Formula Omitted] centroids) to represent a class in the embedding space. In each global round, the computed multiple prototypes and their respective model parameters are sent to the edge server for aggregation into a global prototype pool, which is then sent back to all clients to guide their local training. Finally, local training for each client minimizes their own supervised learning tasks and learns from shared prototypes in the global prototype pool through supervised contrastive learning, which encourages them to learn knowledge related to their own class from others and reduces the absorption of unrelated knowledge in each global iteration. Experimental results on MNIST, Digit-5, Office-10, and DomainNet show that our method outperforms multiple baselines, with an average test accuracy improvement of about 4.6% and 10.4% under feature and label non-IID distributions, respectively.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JIOT.2023.3320250</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-4045-8473</orcidid><orcidid>https://orcid.org/0000-0003-3484-7333</orcidid><orcidid>https://orcid.org/0009-0007-8342-7614</orcidid><orcidid>https://orcid.org/0000-0003-3970-1878</orcidid><orcidid>https://orcid.org/0000-0002-7255-1085</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2024-03, Vol.11 (5), p.8604-8623 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_2929257843 |
source | IEEE Electronic Library (IEL) |
subjects | Centroids Clients Cognitive tasks Edge computing Embedding Intelligence Iterative methods Labels Prototypes Supervised learning |
title | MP-FedCL: Multiprototype Federated Contrastive Learning for Edge Intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A30%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MP-FedCL:%20Multiprototype%20Federated%20Contrastive%20Learning%20for%20Edge%20Intelligence&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Qiao,%20Yu&rft.date=2024-03-01&rft.volume=11&rft.issue=5&rft.spage=8604&rft.epage=8623&rft.pages=8604-8623&rft.issn=2327-4662&rft.eissn=2327-4662&rft_id=info:doi/10.1109/JIOT.2023.3320250&rft_dat=%3Cproquest_cross%3E2929257843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929257843&rft_id=info:pmid/&rfr_iscdi=true |