Damage Mechanics-Based Failure Prediction of Wirebond in Power Electronic Module

A damage mechanics-based numerical approach for the prediction of the damage evolution in wirebond structures of the power electronic module (PEM) is presented. A simplistic damage evolution model is developed in an in-house finite element code, with a demonstration focused on the analysis of the wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.25215-25227
Hauptverfasser: Rajaguru, Pushpa, Tilford, Tim, Bailey, Chris, Stoyanov, Stoyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25227
container_issue
container_start_page 25215
container_title IEEE access
container_volume 12
creator Rajaguru, Pushpa
Tilford, Tim
Bailey, Chris
Stoyanov, Stoyan
description A damage mechanics-based numerical approach for the prediction of the damage evolution in wirebond structures of the power electronic module (PEM) is presented. A simplistic damage evolution model is developed in an in-house finite element code, with a demonstration focused on the analysis of the wirebond damage evolution by thermally induced stresses in PEM subjected to varying thermal loads. The novelty of the proposed methodology is the damage evolution realized at the level of each discretised mesh element of the finite element model of the PEM structure in the numerical approach and the associated impact of damage on the mechanical material properties of that element. A simplified PEM structure is utilised as a case study to demonstrate the proposed damage evolution modelling. The thermal load of each discretised element of the PEM structure was imported from an external thermal code. From the thermally induced stresses, plastic strain rates were approximated and then, using these metrics a damage evolution metric was derived. The damage distribution plot of the wirebond structure for the applied load in the case study indicates that maximum damage accumulation at the heel structure reaches 2.4% of the total damage after 3 seconds. By extrapolating the trendline of damage evolution in wirebond, the time of the structural failure was also predicted. The maximum von Mises stress was observed on the busbar which reaches 64 MPa. The extreme stresses found at the busbar are attributed to the high value of the coefficient of thermal expansion of the busbar material.
doi_str_mv 10.1109/ACCESS.2023.3342689
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2929203878</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10356068</ieee_id><doaj_id>oai_doaj_org_article_c9276012aa714b2ebd61cd90991f34f8</doaj_id><sourcerecordid>2929203878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8458e555e230fc50f832936a8d24056ceb0cf9a08e77e80072588765d83717da3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaKgVH-BHgKet-Zj83XU2mqhYkHFY0iTWU3Zbmp2i_jv3boizhxmeMx7b-AhdE7JmFJirq4nk-nT05gRxsecl0xqc4BOGJWm4ILLw3_7MTpr2zXpS_eQUCdoees27g3wA_h310TfFjeuhYBnLta7DHiZIUTfxdTgVOHXmGGVmoBjg5fpEzKe1uC7nHomfkhhV8MpOqpc3cLZ7xyhl9n0eXJfLB7v5pPrReG5MF2hS6FBCAGMk8oLUmnODJdOB1YSIT2siK-MIxqUAk2IYkJrJUXQXFEVHB-h-aAbklvbbY4bl79sctH-ACm_WZe76Guw3jAlCWXOKVquGKyCpD4YYgyteNk7j9DloLXN6WMHbWfXaZeb_n3LTN-Ea7W_4sOVz6ltM1R_rpTYfRJ2SMLuk7C_SfSsi4EVAeAfgwtJpObf9wuCOg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929203878</pqid></control><display><type>article</type><title>Damage Mechanics-Based Failure Prediction of Wirebond in Power Electronic Module</title><source>IEEE Open Access Journals</source><source>TestCollectionTL3OpenAccess</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rajaguru, Pushpa ; Tilford, Tim ; Bailey, Chris ; Stoyanov, Stoyan</creator><creatorcontrib>Rajaguru, Pushpa ; Tilford, Tim ; Bailey, Chris ; Stoyanov, Stoyan</creatorcontrib><description>A damage mechanics-based numerical approach for the prediction of the damage evolution in wirebond structures of the power electronic module (PEM) is presented. A simplistic damage evolution model is developed in an in-house finite element code, with a demonstration focused on the analysis of the wirebond damage evolution by thermally induced stresses in PEM subjected to varying thermal loads. The novelty of the proposed methodology is the damage evolution realized at the level of each discretised mesh element of the finite element model of the PEM structure in the numerical approach and the associated impact of damage on the mechanical material properties of that element. A simplified PEM structure is utilised as a case study to demonstrate the proposed damage evolution modelling. The thermal load of each discretised element of the PEM structure was imported from an external thermal code. From the thermally induced stresses, plastic strain rates were approximated and then, using these metrics a damage evolution metric was derived. The damage distribution plot of the wirebond structure for the applied load in the case study indicates that maximum damage accumulation at the heel structure reaches 2.4% of the total damage after 3 seconds. By extrapolating the trendline of damage evolution in wirebond, the time of the structural failure was also predicted. The maximum von Mises stress was observed on the busbar which reaches 64 MPa. The extreme stresses found at the busbar are attributed to the high value of the coefficient of thermal expansion of the busbar material.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3342689</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Busbars ; Case studies ; creep ; damage ; Damage accumulation ; Discretization ; Evolution ; fatigue failure ; Finite element method ; Impact damage ; Load modeling ; Loading ; Material properties ; Mathematical analysis ; Mathematical models ; Measurement ; Mechanics (physics) ; Modules ; Numerical models ; Plastic deformation ; Power electronic module ; Predictive models ; Stresses ; Structural failure ; Thermal analysis ; Thermal expansion ; Thermal loading ; viscoplastic behavior ; wirebond</subject><ispartof>IEEE access, 2024, Vol.12, p.25215-25227</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-8458e555e230fc50f832936a8d24056ceb0cf9a08e77e80072588765d83717da3</cites><orcidid>0000-0002-6041-0517 ; 0000-0002-9438-3879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10356068$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Rajaguru, Pushpa</creatorcontrib><creatorcontrib>Tilford, Tim</creatorcontrib><creatorcontrib>Bailey, Chris</creatorcontrib><creatorcontrib>Stoyanov, Stoyan</creatorcontrib><title>Damage Mechanics-Based Failure Prediction of Wirebond in Power Electronic Module</title><title>IEEE access</title><addtitle>Access</addtitle><description>A damage mechanics-based numerical approach for the prediction of the damage evolution in wirebond structures of the power electronic module (PEM) is presented. A simplistic damage evolution model is developed in an in-house finite element code, with a demonstration focused on the analysis of the wirebond damage evolution by thermally induced stresses in PEM subjected to varying thermal loads. The novelty of the proposed methodology is the damage evolution realized at the level of each discretised mesh element of the finite element model of the PEM structure in the numerical approach and the associated impact of damage on the mechanical material properties of that element. A simplified PEM structure is utilised as a case study to demonstrate the proposed damage evolution modelling. The thermal load of each discretised element of the PEM structure was imported from an external thermal code. From the thermally induced stresses, plastic strain rates were approximated and then, using these metrics a damage evolution metric was derived. The damage distribution plot of the wirebond structure for the applied load in the case study indicates that maximum damage accumulation at the heel structure reaches 2.4% of the total damage after 3 seconds. By extrapolating the trendline of damage evolution in wirebond, the time of the structural failure was also predicted. The maximum von Mises stress was observed on the busbar which reaches 64 MPa. The extreme stresses found at the busbar are attributed to the high value of the coefficient of thermal expansion of the busbar material.</description><subject>Busbars</subject><subject>Case studies</subject><subject>creep</subject><subject>damage</subject><subject>Damage accumulation</subject><subject>Discretization</subject><subject>Evolution</subject><subject>fatigue failure</subject><subject>Finite element method</subject><subject>Impact damage</subject><subject>Load modeling</subject><subject>Loading</subject><subject>Material properties</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Measurement</subject><subject>Mechanics (physics)</subject><subject>Modules</subject><subject>Numerical models</subject><subject>Plastic deformation</subject><subject>Power electronic module</subject><subject>Predictive models</subject><subject>Stresses</subject><subject>Structural failure</subject><subject>Thermal analysis</subject><subject>Thermal expansion</subject><subject>Thermal loading</subject><subject>viscoplastic behavior</subject><subject>wirebond</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQDaKgVH-BHgKet-Zj83XU2mqhYkHFY0iTWU3Zbmp2i_jv3boizhxmeMx7b-AhdE7JmFJirq4nk-nT05gRxsecl0xqc4BOGJWm4ILLw3_7MTpr2zXpS_eQUCdoees27g3wA_h310TfFjeuhYBnLta7DHiZIUTfxdTgVOHXmGGVmoBjg5fpEzKe1uC7nHomfkhhV8MpOqpc3cLZ7xyhl9n0eXJfLB7v5pPrReG5MF2hS6FBCAGMk8oLUmnODJdOB1YSIT2siK-MIxqUAk2IYkJrJUXQXFEVHB-h-aAbklvbbY4bl79sctH-ACm_WZe76Guw3jAlCWXOKVquGKyCpD4YYgyteNk7j9DloLXN6WMHbWfXaZeb_n3LTN-Ea7W_4sOVz6ltM1R_rpTYfRJ2SMLuk7C_SfSsi4EVAeAfgwtJpObf9wuCOg</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rajaguru, Pushpa</creator><creator>Tilford, Tim</creator><creator>Bailey, Chris</creator><creator>Stoyanov, Stoyan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6041-0517</orcidid><orcidid>https://orcid.org/0000-0002-9438-3879</orcidid></search><sort><creationdate>2024</creationdate><title>Damage Mechanics-Based Failure Prediction of Wirebond in Power Electronic Module</title><author>Rajaguru, Pushpa ; Tilford, Tim ; Bailey, Chris ; Stoyanov, Stoyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8458e555e230fc50f832936a8d24056ceb0cf9a08e77e80072588765d83717da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Busbars</topic><topic>Case studies</topic><topic>creep</topic><topic>damage</topic><topic>Damage accumulation</topic><topic>Discretization</topic><topic>Evolution</topic><topic>fatigue failure</topic><topic>Finite element method</topic><topic>Impact damage</topic><topic>Load modeling</topic><topic>Loading</topic><topic>Material properties</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Measurement</topic><topic>Mechanics (physics)</topic><topic>Modules</topic><topic>Numerical models</topic><topic>Plastic deformation</topic><topic>Power electronic module</topic><topic>Predictive models</topic><topic>Stresses</topic><topic>Structural failure</topic><topic>Thermal analysis</topic><topic>Thermal expansion</topic><topic>Thermal loading</topic><topic>viscoplastic behavior</topic><topic>wirebond</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajaguru, Pushpa</creatorcontrib><creatorcontrib>Tilford, Tim</creatorcontrib><creatorcontrib>Bailey, Chris</creatorcontrib><creatorcontrib>Stoyanov, Stoyan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>TestCollectionTL3OpenAccess</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajaguru, Pushpa</au><au>Tilford, Tim</au><au>Bailey, Chris</au><au>Stoyanov, Stoyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage Mechanics-Based Failure Prediction of Wirebond in Power Electronic Module</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>25215</spage><epage>25227</epage><pages>25215-25227</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>A damage mechanics-based numerical approach for the prediction of the damage evolution in wirebond structures of the power electronic module (PEM) is presented. A simplistic damage evolution model is developed in an in-house finite element code, with a demonstration focused on the analysis of the wirebond damage evolution by thermally induced stresses in PEM subjected to varying thermal loads. The novelty of the proposed methodology is the damage evolution realized at the level of each discretised mesh element of the finite element model of the PEM structure in the numerical approach and the associated impact of damage on the mechanical material properties of that element. A simplified PEM structure is utilised as a case study to demonstrate the proposed damage evolution modelling. The thermal load of each discretised element of the PEM structure was imported from an external thermal code. From the thermally induced stresses, plastic strain rates were approximated and then, using these metrics a damage evolution metric was derived. The damage distribution plot of the wirebond structure for the applied load in the case study indicates that maximum damage accumulation at the heel structure reaches 2.4% of the total damage after 3 seconds. By extrapolating the trendline of damage evolution in wirebond, the time of the structural failure was also predicted. The maximum von Mises stress was observed on the busbar which reaches 64 MPa. The extreme stresses found at the busbar are attributed to the high value of the coefficient of thermal expansion of the busbar material.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3342689</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6041-0517</orcidid><orcidid>https://orcid.org/0000-0002-9438-3879</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.25215-25227
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2929203878
source IEEE Open Access Journals; TestCollectionTL3OpenAccess; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Busbars
Case studies
creep
damage
Damage accumulation
Discretization
Evolution
fatigue failure
Finite element method
Impact damage
Load modeling
Loading
Material properties
Mathematical analysis
Mathematical models
Measurement
Mechanics (physics)
Modules
Numerical models
Plastic deformation
Power electronic module
Predictive models
Stresses
Structural failure
Thermal analysis
Thermal expansion
Thermal loading
viscoplastic behavior
wirebond
title Damage Mechanics-Based Failure Prediction of Wirebond in Power Electronic Module
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A30%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage%20Mechanics-Based%20Failure%20Prediction%20of%20Wirebond%20in%20Power%20Electronic%20Module&rft.jtitle=IEEE%20access&rft.au=Rajaguru,%20Pushpa&rft.date=2024&rft.volume=12&rft.spage=25215&rft.epage=25227&rft.pages=25215-25227&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3342689&rft_dat=%3Cproquest_cross%3E2929203878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2929203878&rft_id=info:pmid/&rft_ieee_id=10356068&rft_doaj_id=oai_doaj_org_article_c9276012aa714b2ebd61cd90991f34f8&rfr_iscdi=true