Brain tumor segmentation based on kernel fuzzy c-means and penguin search optimization algorithm

Brain tumor is the irregular growth of cells in the brain that can develop into malignant or benign tumors. However, the prediction of brain tumors is the most difficult task in the medical field due to the anatomy of the tumor cells. In recent years, advances in deep learning access to medical diag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2024-03, Vol.18 (2), p.1793-1802
Hauptverfasser: Raj, J. Relin Francis, Vijayalakshmi, K., Priya, S. Kavi, Appathurai, Ahilan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1802
container_issue 2
container_start_page 1793
container_title Signal, image and video processing
container_volume 18
creator Raj, J. Relin Francis
Vijayalakshmi, K.
Priya, S. Kavi
Appathurai, Ahilan
description Brain tumor is the irregular growth of cells in the brain that can develop into malignant or benign tumors. However, the prediction of brain tumors is the most difficult task in the medical field due to the anatomy of the tumor cells. In recent years, advances in deep learning access to medical diagnostic imaging have led to greater accuracy in short time segmenting brain tumors. In this work, a novel approach based on Segmentation-based Kernel Fuzzy C-Mean (SKFCM) with Penguin Search Optimization Algorithm (PeSOA) with an Adaptive Dense Neural Network (ADNN) classifier was implemented. The MRI images are pre-processed using Bright-contrast Dynamic Histogram Equalization (BCDHE) with a weighted median filter and the multi features are extracted with the Modular linear discriminant analysis (MLDA). The Adaptive Dense Neural Network (ADNN) using a unique SKFCM with a machine learning-based Penguin Search Optimization Algorithm was used to segment brain tumors (PeSOA). The effectiveness of the proposed method was estimated based on specificity, accuracy, sensitivity, and tumor area length in vertical and horizontal locations. The proposed approach progresses the overall accuracy of 1.11%, 4.44%, and 6.18% better than CNN, ANN-fuzzy C-means, and R-CNN, respectively.
doi_str_mv 10.1007/s11760-023-02849-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928896472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928896472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f8aa221531ed14807cae362d0a5af18950886708815e92ccd9bcdb18963d67cf3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEhX0B1hZYh3wo4ntJVS8pEpsYG1ce5KmNE6wnUX79RiCYMdI85DmnhnpInRByRUlRFxHSkVFCsJ4TrlQhTpCMyorXlBB6fHvTPgpmse4JTk4E7KSM_R2G0zrcRq7PuAITQc-mdT2Hq9NBIfz8A7Bww7X4-Gwx7bowPiIjXd4AN-MGY5ggt3gfkht1x4m2uyaPrRp052jk9rsIsx_-hl6vb97WT4Wq-eHp-XNqrBMkFTU0hjGaMkpOLqQRFgDvGKOmNLUVKqSSFmJXGgJilnr1Nq6dV5U3FXC1vwMXU53h9B_jBCT3vZj8PmlZorJLFwIllVsUtnQxxig1kNoOxP2mhL9ZaaezNTZTP1tplYZ4hMUs9g3EP5O_0N9AkQQeBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928896472</pqid></control><display><type>article</type><title>Brain tumor segmentation based on kernel fuzzy c-means and penguin search optimization algorithm</title><source>SpringerNature Journals</source><creator>Raj, J. Relin Francis ; Vijayalakshmi, K. ; Priya, S. Kavi ; Appathurai, Ahilan</creator><creatorcontrib>Raj, J. Relin Francis ; Vijayalakshmi, K. ; Priya, S. Kavi ; Appathurai, Ahilan</creatorcontrib><description>Brain tumor is the irregular growth of cells in the brain that can develop into malignant or benign tumors. However, the prediction of brain tumors is the most difficult task in the medical field due to the anatomy of the tumor cells. In recent years, advances in deep learning access to medical diagnostic imaging have led to greater accuracy in short time segmenting brain tumors. In this work, a novel approach based on Segmentation-based Kernel Fuzzy C-Mean (SKFCM) with Penguin Search Optimization Algorithm (PeSOA) with an Adaptive Dense Neural Network (ADNN) classifier was implemented. The MRI images are pre-processed using Bright-contrast Dynamic Histogram Equalization (BCDHE) with a weighted median filter and the multi features are extracted with the Modular linear discriminant analysis (MLDA). The Adaptive Dense Neural Network (ADNN) using a unique SKFCM with a machine learning-based Penguin Search Optimization Algorithm was used to segment brain tumors (PeSOA). The effectiveness of the proposed method was estimated based on specificity, accuracy, sensitivity, and tumor area length in vertical and horizontal locations. The proposed approach progresses the overall accuracy of 1.11%, 4.44%, and 6.18% better than CNN, ANN-fuzzy C-means, and R-CNN, respectively.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-023-02849-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Accuracy ; Algorithms ; Brain ; Brain cancer ; Computer Imaging ; Computer Science ; Deep learning ; Discriminant analysis ; Image contrast ; Image Processing and Computer Vision ; Machine learning ; Medical imaging ; Multimedia Information Systems ; Neural networks ; Optimization ; Optimization algorithms ; Original Paper ; Pattern Recognition and Graphics ; Searching ; Signal,Image and Speech Processing ; Tumors ; Vision</subject><ispartof>Signal, image and video processing, 2024-03, Vol.18 (2), p.1793-1802</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-f8aa221531ed14807cae362d0a5af18950886708815e92ccd9bcdb18963d67cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-023-02849-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-023-02849-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Raj, J. Relin Francis</creatorcontrib><creatorcontrib>Vijayalakshmi, K.</creatorcontrib><creatorcontrib>Priya, S. Kavi</creatorcontrib><creatorcontrib>Appathurai, Ahilan</creatorcontrib><title>Brain tumor segmentation based on kernel fuzzy c-means and penguin search optimization algorithm</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Brain tumor is the irregular growth of cells in the brain that can develop into malignant or benign tumors. However, the prediction of brain tumors is the most difficult task in the medical field due to the anatomy of the tumor cells. In recent years, advances in deep learning access to medical diagnostic imaging have led to greater accuracy in short time segmenting brain tumors. In this work, a novel approach based on Segmentation-based Kernel Fuzzy C-Mean (SKFCM) with Penguin Search Optimization Algorithm (PeSOA) with an Adaptive Dense Neural Network (ADNN) classifier was implemented. The MRI images are pre-processed using Bright-contrast Dynamic Histogram Equalization (BCDHE) with a weighted median filter and the multi features are extracted with the Modular linear discriminant analysis (MLDA). The Adaptive Dense Neural Network (ADNN) using a unique SKFCM with a machine learning-based Penguin Search Optimization Algorithm was used to segment brain tumors (PeSOA). The effectiveness of the proposed method was estimated based on specificity, accuracy, sensitivity, and tumor area length in vertical and horizontal locations. The proposed approach progresses the overall accuracy of 1.11%, 4.44%, and 6.18% better than CNN, ANN-fuzzy C-means, and R-CNN, respectively.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Image contrast</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Searching</subject><subject>Signal,Image and Speech Processing</subject><subject>Tumors</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEhX0B1hZYh3wo4ntJVS8pEpsYG1ce5KmNE6wnUX79RiCYMdI85DmnhnpInRByRUlRFxHSkVFCsJ4TrlQhTpCMyorXlBB6fHvTPgpmse4JTk4E7KSM_R2G0zrcRq7PuAITQc-mdT2Hq9NBIfz8A7Bww7X4-Gwx7bowPiIjXd4AN-MGY5ggt3gfkht1x4m2uyaPrRp052jk9rsIsx_-hl6vb97WT4Wq-eHp-XNqrBMkFTU0hjGaMkpOLqQRFgDvGKOmNLUVKqSSFmJXGgJilnr1Nq6dV5U3FXC1vwMXU53h9B_jBCT3vZj8PmlZorJLFwIllVsUtnQxxig1kNoOxP2mhL9ZaaezNTZTP1tplYZ4hMUs9g3EP5O_0N9AkQQeBo</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Raj, J. Relin Francis</creator><creator>Vijayalakshmi, K.</creator><creator>Priya, S. Kavi</creator><creator>Appathurai, Ahilan</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Brain tumor segmentation based on kernel fuzzy c-means and penguin search optimization algorithm</title><author>Raj, J. Relin Francis ; Vijayalakshmi, K. ; Priya, S. Kavi ; Appathurai, Ahilan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f8aa221531ed14807cae362d0a5af18950886708815e92ccd9bcdb18963d67cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Image contrast</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Searching</topic><topic>Signal,Image and Speech Processing</topic><topic>Tumors</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raj, J. Relin Francis</creatorcontrib><creatorcontrib>Vijayalakshmi, K.</creatorcontrib><creatorcontrib>Priya, S. Kavi</creatorcontrib><creatorcontrib>Appathurai, Ahilan</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raj, J. Relin Francis</au><au>Vijayalakshmi, K.</au><au>Priya, S. Kavi</au><au>Appathurai, Ahilan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain tumor segmentation based on kernel fuzzy c-means and penguin search optimization algorithm</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><spage>1793</spage><epage>1802</epage><pages>1793-1802</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Brain tumor is the irregular growth of cells in the brain that can develop into malignant or benign tumors. However, the prediction of brain tumors is the most difficult task in the medical field due to the anatomy of the tumor cells. In recent years, advances in deep learning access to medical diagnostic imaging have led to greater accuracy in short time segmenting brain tumors. In this work, a novel approach based on Segmentation-based Kernel Fuzzy C-Mean (SKFCM) with Penguin Search Optimization Algorithm (PeSOA) with an Adaptive Dense Neural Network (ADNN) classifier was implemented. The MRI images are pre-processed using Bright-contrast Dynamic Histogram Equalization (BCDHE) with a weighted median filter and the multi features are extracted with the Modular linear discriminant analysis (MLDA). The Adaptive Dense Neural Network (ADNN) using a unique SKFCM with a machine learning-based Penguin Search Optimization Algorithm was used to segment brain tumors (PeSOA). The effectiveness of the proposed method was estimated based on specificity, accuracy, sensitivity, and tumor area length in vertical and horizontal locations. The proposed approach progresses the overall accuracy of 1.11%, 4.44%, and 6.18% better than CNN, ANN-fuzzy C-means, and R-CNN, respectively.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-023-02849-9</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2024-03, Vol.18 (2), p.1793-1802
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2928896472
source SpringerNature Journals
subjects Accuracy
Algorithms
Brain
Brain cancer
Computer Imaging
Computer Science
Deep learning
Discriminant analysis
Image contrast
Image Processing and Computer Vision
Machine learning
Medical imaging
Multimedia Information Systems
Neural networks
Optimization
Optimization algorithms
Original Paper
Pattern Recognition and Graphics
Searching
Signal,Image and Speech Processing
Tumors
Vision
title Brain tumor segmentation based on kernel fuzzy c-means and penguin search optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20tumor%20segmentation%20based%20on%20kernel%20fuzzy%20c-means%20and%20penguin%20search%20optimization%20algorithm&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Raj,%20J.%20Relin%20Francis&rft.date=2024-03-01&rft.volume=18&rft.issue=2&rft.spage=1793&rft.epage=1802&rft.pages=1793-1802&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-023-02849-9&rft_dat=%3Cproquest_cross%3E2928896472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928896472&rft_id=info:pmid/&rfr_iscdi=true