Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity

SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2024-03, Vol.43 (3), p.1167-1176
Hauptverfasser: Wang, Meng-Fei, Lai, Hua-Jun, Liang, Ji-Sheng, Chen, Jun-Liang, Ding, Wang-Yang, Zhou, Qi, Peng, Ying, Liu, Cheng-Yan, Miao, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1176
container_issue 3
container_start_page 1167
container_title Rare metals
container_volume 43
creator Wang, Meng-Fei
Lai, Hua-Jun
Liang, Ji-Sheng
Chen, Jun-Liang
Ding, Wang-Yang
Zhou, Qi
Peng, Ying
Liu, Cheng-Yan
Miao, Lei
description SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia (ZrO 2 ) composite strategy was applied to an n-type SiGe alloy, tremendously elevating its TE performance. After mechanical alloying and spark plasma sintering (SPS) processes, the ZrO 2 induced the formation of nanopores in the SiGe matrix via phosphorus adsorption. Moreover, such increase in porosity enhanced the phonon scattering and dramatically suppressed lattice thermal conductivity, from 2.83 to 1.59 W·m −1 ·K −1 at 873 K. Additionally, reduced phosphorus doping led to an increase in Seebeck coefficients and a relatively minor decrease in electrical conductivity. The power factor didn’t deteriorate significantly, either, as its maximum of ~ 3.43 mW·m −1 ·K −2 was achieved at 873 K with (Si 0.8 Ge 0.2 ) 0.097 P 0.03 (ZrO 2 ) 0.003 . In short, a peak figure of merit ( ZT ) of ~ 1.27 at 873 K and an average ZT  ~ 0.7 from 323 to 873 K were obtained. This study demonstrates that the electrical and thermal transportation of SiGe material can be synergistically tuned by compositing ZrO 2 , illustrating a novel strategy to optimize the TE properties of bulk materials. Graphical abstract
doi_str_mv 10.1007/s12598-023-02469-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928889604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928889604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-925658f9d42e4ee9323be36cf3fa5e39faceeb0d32e23f15388975f32bdddc223</originalsourceid><addsrcrecordid>eNp9kE1LAzEURQdRsFb_gKuA69F8zFeWUmoVCl2oGzdhJvPSpswkY5Ja5t-bOoI7F488yLn3wUmSW4LvCcblgyc051WKKYuTFTzlZ8mMVEWZlqTKz-OOMUlxTsllcuX9HuMsKwo8S9zS7GojoUVhB6630IEMTks0gFPW9ac_BKZuuog0I5K2H6zXQZst-nAbirRBJg3jAOhVrwDVXWdHdNRhhzp7nErrLsZMe5BBf-kwXicXqu483Py-8-T9afm2eE7Xm9XL4nGdSkZ4SDnNi7xSvM0oZACcUdYAK6Riqs6BcVVLgAa3jAJliuSsqniZK0abtm0lpWye3E29g7OfB_BB7O3BmXhSUE6riBc4ixSdKOms9w6UGJzuazcKgsXJrZjciuhW_LgVPIbYFPIRNltwf9X_pL4BpAJ-og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928889604</pqid></control><display><type>article</type><title>Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Meng-Fei ; Lai, Hua-Jun ; Liang, Ji-Sheng ; Chen, Jun-Liang ; Ding, Wang-Yang ; Zhou, Qi ; Peng, Ying ; Liu, Cheng-Yan ; Miao, Lei</creator><creatorcontrib>Wang, Meng-Fei ; Lai, Hua-Jun ; Liang, Ji-Sheng ; Chen, Jun-Liang ; Ding, Wang-Yang ; Zhou, Qi ; Peng, Ying ; Liu, Cheng-Yan ; Miao, Lei</creatorcontrib><description>SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia (ZrO 2 ) composite strategy was applied to an n-type SiGe alloy, tremendously elevating its TE performance. After mechanical alloying and spark plasma sintering (SPS) processes, the ZrO 2 induced the formation of nanopores in the SiGe matrix via phosphorus adsorption. Moreover, such increase in porosity enhanced the phonon scattering and dramatically suppressed lattice thermal conductivity, from 2.83 to 1.59 W·m −1 ·K −1 at 873 K. Additionally, reduced phosphorus doping led to an increase in Seebeck coefficients and a relatively minor decrease in electrical conductivity. The power factor didn’t deteriorate significantly, either, as its maximum of ~ 3.43 mW·m −1 ·K −2 was achieved at 873 K with (Si 0.8 Ge 0.2 ) 0.097 P 0.03 (ZrO 2 ) 0.003 . In short, a peak figure of merit ( ZT ) of ~ 1.27 at 873 K and an average ZT  ~ 0.7 from 323 to 873 K were obtained. This study demonstrates that the electrical and thermal transportation of SiGe material can be synergistically tuned by compositing ZrO 2 , illustrating a novel strategy to optimize the TE properties of bulk materials. Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-023-02469-9</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Electrical resistivity ; Energy ; Figure of merit ; Heat conductivity ; Heat transfer ; Maintenance costs ; Materials Engineering ; Materials Science ; Mechanical alloying ; Metallic Materials ; Nanoscale Science and Technology ; Original Article ; Phosphorus ; Physical Chemistry ; Plasma sintering ; Porosity ; Power factor ; Seebeck effect ; Silicon germanides ; Sintering (powder metallurgy) ; Spark plasma sintering ; Thermal conductivity ; Thermoelectric materials ; Zirconium dioxide</subject><ispartof>Rare metals, 2024-03, Vol.43 (3), p.1167-1176</ispartof><rights>Youke Publishing Co.,Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-925658f9d42e4ee9323be36cf3fa5e39faceeb0d32e23f15388975f32bdddc223</citedby><cites>FETCH-LOGICAL-c319t-925658f9d42e4ee9323be36cf3fa5e39faceeb0d32e23f15388975f32bdddc223</cites><orcidid>0000-0002-2281-2689 ; 0000-0001-6548-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-023-02469-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-023-02469-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Wang, Meng-Fei</creatorcontrib><creatorcontrib>Lai, Hua-Jun</creatorcontrib><creatorcontrib>Liang, Ji-Sheng</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Ding, Wang-Yang</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Peng, Ying</creatorcontrib><creatorcontrib>Liu, Cheng-Yan</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><title>Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia (ZrO 2 ) composite strategy was applied to an n-type SiGe alloy, tremendously elevating its TE performance. After mechanical alloying and spark plasma sintering (SPS) processes, the ZrO 2 induced the formation of nanopores in the SiGe matrix via phosphorus adsorption. Moreover, such increase in porosity enhanced the phonon scattering and dramatically suppressed lattice thermal conductivity, from 2.83 to 1.59 W·m −1 ·K −1 at 873 K. Additionally, reduced phosphorus doping led to an increase in Seebeck coefficients and a relatively minor decrease in electrical conductivity. The power factor didn’t deteriorate significantly, either, as its maximum of ~ 3.43 mW·m −1 ·K −2 was achieved at 873 K with (Si 0.8 Ge 0.2 ) 0.097 P 0.03 (ZrO 2 ) 0.003 . In short, a peak figure of merit ( ZT ) of ~ 1.27 at 873 K and an average ZT  ~ 0.7 from 323 to 873 K were obtained. This study demonstrates that the electrical and thermal transportation of SiGe material can be synergistically tuned by compositing ZrO 2 , illustrating a novel strategy to optimize the TE properties of bulk materials. Graphical abstract</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Electrical resistivity</subject><subject>Energy</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Maintenance costs</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mechanical alloying</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Phosphorus</subject><subject>Physical Chemistry</subject><subject>Plasma sintering</subject><subject>Porosity</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Silicon germanides</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Zirconium dioxide</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURQdRsFb_gKuA69F8zFeWUmoVCl2oGzdhJvPSpswkY5Ja5t-bOoI7F488yLn3wUmSW4LvCcblgyc051WKKYuTFTzlZ8mMVEWZlqTKz-OOMUlxTsllcuX9HuMsKwo8S9zS7GojoUVhB6630IEMTks0gFPW9ac_BKZuuog0I5K2H6zXQZst-nAbirRBJg3jAOhVrwDVXWdHdNRhhzp7nErrLsZMe5BBf-kwXicXqu483Py-8-T9afm2eE7Xm9XL4nGdSkZ4SDnNi7xSvM0oZACcUdYAK6Riqs6BcVVLgAa3jAJliuSsqniZK0abtm0lpWye3E29g7OfB_BB7O3BmXhSUE6riBc4ixSdKOms9w6UGJzuazcKgsXJrZjciuhW_LgVPIbYFPIRNltwf9X_pL4BpAJ-og</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Meng-Fei</creator><creator>Lai, Hua-Jun</creator><creator>Liang, Ji-Sheng</creator><creator>Chen, Jun-Liang</creator><creator>Ding, Wang-Yang</creator><creator>Zhou, Qi</creator><creator>Peng, Ying</creator><creator>Liu, Cheng-Yan</creator><creator>Miao, Lei</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2281-2689</orcidid><orcidid>https://orcid.org/0000-0001-6548-207X</orcidid></search><sort><creationdate>20240301</creationdate><title>Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity</title><author>Wang, Meng-Fei ; Lai, Hua-Jun ; Liang, Ji-Sheng ; Chen, Jun-Liang ; Ding, Wang-Yang ; Zhou, Qi ; Peng, Ying ; Liu, Cheng-Yan ; Miao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-925658f9d42e4ee9323be36cf3fa5e39faceeb0d32e23f15388975f32bdddc223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Electrical resistivity</topic><topic>Energy</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Maintenance costs</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mechanical alloying</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Phosphorus</topic><topic>Physical Chemistry</topic><topic>Plasma sintering</topic><topic>Porosity</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Silicon germanides</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng-Fei</creatorcontrib><creatorcontrib>Lai, Hua-Jun</creatorcontrib><creatorcontrib>Liang, Ji-Sheng</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Ding, Wang-Yang</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Peng, Ying</creatorcontrib><creatorcontrib>Liu, Cheng-Yan</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng-Fei</au><au>Lai, Hua-Jun</au><au>Liang, Ji-Sheng</au><au>Chen, Jun-Liang</au><au>Ding, Wang-Yang</au><au>Zhou, Qi</au><au>Peng, Ying</au><au>Liu, Cheng-Yan</au><au>Miao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>43</volume><issue>3</issue><spage>1167</spage><epage>1176</epage><pages>1167-1176</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia (ZrO 2 ) composite strategy was applied to an n-type SiGe alloy, tremendously elevating its TE performance. After mechanical alloying and spark plasma sintering (SPS) processes, the ZrO 2 induced the formation of nanopores in the SiGe matrix via phosphorus adsorption. Moreover, such increase in porosity enhanced the phonon scattering and dramatically suppressed lattice thermal conductivity, from 2.83 to 1.59 W·m −1 ·K −1 at 873 K. Additionally, reduced phosphorus doping led to an increase in Seebeck coefficients and a relatively minor decrease in electrical conductivity. The power factor didn’t deteriorate significantly, either, as its maximum of ~ 3.43 mW·m −1 ·K −2 was achieved at 873 K with (Si 0.8 Ge 0.2 ) 0.097 P 0.03 (ZrO 2 ) 0.003 . In short, a peak figure of merit ( ZT ) of ~ 1.27 at 873 K and an average ZT  ~ 0.7 from 323 to 873 K were obtained. This study demonstrates that the electrical and thermal transportation of SiGe material can be synergistically tuned by compositing ZrO 2 , illustrating a novel strategy to optimize the TE properties of bulk materials. Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-023-02469-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2281-2689</orcidid><orcidid>https://orcid.org/0000-0001-6548-207X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2024-03, Vol.43 (3), p.1167-1176
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_2928889604
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Biomaterials
Chemistry and Materials Science
Electrical resistivity
Energy
Figure of merit
Heat conductivity
Heat transfer
Maintenance costs
Materials Engineering
Materials Science
Mechanical alloying
Metallic Materials
Nanoscale Science and Technology
Original Article
Phosphorus
Physical Chemistry
Plasma sintering
Porosity
Power factor
Seebeck effect
Silicon germanides
Sintering (powder metallurgy)
Spark plasma sintering
Thermal conductivity
Thermoelectric materials
Zirconium dioxide
title Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermoelectric%20performance%20enabled%20by%20compositing%20ZrO2%20in%20n-type%20SiGe%20alloy%20with%20low%20thermal%20conductivity&rft.jtitle=Rare%20metals&rft.au=Wang,%20Meng-Fei&rft.date=2024-03-01&rft.volume=43&rft.issue=3&rft.spage=1167&rft.epage=1176&rft.pages=1167-1176&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-023-02469-9&rft_dat=%3Cproquest_cross%3E2928889604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928889604&rft_id=info:pmid/&rfr_iscdi=true