Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity
SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia...
Gespeichert in:
Veröffentlicht in: | Rare metals 2024-03, Vol.43 (3), p.1167-1176 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1176 |
---|---|
container_issue | 3 |
container_start_page | 1167 |
container_title | Rare metals |
container_volume | 43 |
creator | Wang, Meng-Fei Lai, Hua-Jun Liang, Ji-Sheng Chen, Jun-Liang Ding, Wang-Yang Zhou, Qi Peng, Ying Liu, Cheng-Yan Miao, Lei |
description | SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia (ZrO
2
) composite strategy was applied to an n-type SiGe alloy, tremendously elevating its TE performance. After mechanical alloying and spark plasma sintering (SPS) processes, the ZrO
2
induced the formation of nanopores in the SiGe matrix via phosphorus adsorption. Moreover, such increase in porosity enhanced the phonon scattering and dramatically suppressed lattice thermal conductivity, from 2.83 to 1.59 W·m
−1
·K
−1
at 873 K. Additionally, reduced phosphorus doping led to an increase in Seebeck coefficients and a relatively minor decrease in electrical conductivity. The power factor didn’t deteriorate significantly, either, as its maximum of ~ 3.43 mW·m
−1
·K
−2
was achieved at 873 K with (Si
0.8
Ge
0.2
)
0.097
P
0.03
(ZrO
2
)
0.003
. In short, a peak figure of merit (
ZT
) of ~ 1.27 at 873 K and an average
ZT
~ 0.7 from 323 to 873 K were obtained. This study demonstrates that the electrical and thermal transportation of SiGe material can be synergistically tuned by compositing ZrO
2
, illustrating a novel strategy to optimize the TE properties of bulk materials.
Graphical abstract |
doi_str_mv | 10.1007/s12598-023-02469-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928889604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928889604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-925658f9d42e4ee9323be36cf3fa5e39faceeb0d32e23f15388975f32bdddc223</originalsourceid><addsrcrecordid>eNp9kE1LAzEURQdRsFb_gKuA69F8zFeWUmoVCl2oGzdhJvPSpswkY5Ja5t-bOoI7F488yLn3wUmSW4LvCcblgyc051WKKYuTFTzlZ8mMVEWZlqTKz-OOMUlxTsllcuX9HuMsKwo8S9zS7GojoUVhB6630IEMTks0gFPW9ac_BKZuuog0I5K2H6zXQZst-nAbirRBJg3jAOhVrwDVXWdHdNRhhzp7nErrLsZMe5BBf-kwXicXqu483Py-8-T9afm2eE7Xm9XL4nGdSkZ4SDnNi7xSvM0oZACcUdYAK6Riqs6BcVVLgAa3jAJliuSsqniZK0abtm0lpWye3E29g7OfB_BB7O3BmXhSUE6riBc4ixSdKOms9w6UGJzuazcKgsXJrZjciuhW_LgVPIbYFPIRNltwf9X_pL4BpAJ-og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928889604</pqid></control><display><type>article</type><title>Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Meng-Fei ; Lai, Hua-Jun ; Liang, Ji-Sheng ; Chen, Jun-Liang ; Ding, Wang-Yang ; Zhou, Qi ; Peng, Ying ; Liu, Cheng-Yan ; Miao, Lei</creator><creatorcontrib>Wang, Meng-Fei ; Lai, Hua-Jun ; Liang, Ji-Sheng ; Chen, Jun-Liang ; Ding, Wang-Yang ; Zhou, Qi ; Peng, Ying ; Liu, Cheng-Yan ; Miao, Lei</creatorcontrib><description>SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia (ZrO
2
) composite strategy was applied to an n-type SiGe alloy, tremendously elevating its TE performance. After mechanical alloying and spark plasma sintering (SPS) processes, the ZrO
2
induced the formation of nanopores in the SiGe matrix via phosphorus adsorption. Moreover, such increase in porosity enhanced the phonon scattering and dramatically suppressed lattice thermal conductivity, from 2.83 to 1.59 W·m
−1
·K
−1
at 873 K. Additionally, reduced phosphorus doping led to an increase in Seebeck coefficients and a relatively minor decrease in electrical conductivity. The power factor didn’t deteriorate significantly, either, as its maximum of ~ 3.43 mW·m
−1
·K
−2
was achieved at 873 K with (Si
0.8
Ge
0.2
)
0.097
P
0.03
(ZrO
2
)
0.003
. In short, a peak figure of merit (
ZT
) of ~ 1.27 at 873 K and an average
ZT
~ 0.7 from 323 to 873 K were obtained. This study demonstrates that the electrical and thermal transportation of SiGe material can be synergistically tuned by compositing ZrO
2
, illustrating a novel strategy to optimize the TE properties of bulk materials.
Graphical abstract</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-023-02469-9</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Biomaterials ; Chemistry and Materials Science ; Electrical resistivity ; Energy ; Figure of merit ; Heat conductivity ; Heat transfer ; Maintenance costs ; Materials Engineering ; Materials Science ; Mechanical alloying ; Metallic Materials ; Nanoscale Science and Technology ; Original Article ; Phosphorus ; Physical Chemistry ; Plasma sintering ; Porosity ; Power factor ; Seebeck effect ; Silicon germanides ; Sintering (powder metallurgy) ; Spark plasma sintering ; Thermal conductivity ; Thermoelectric materials ; Zirconium dioxide</subject><ispartof>Rare metals, 2024-03, Vol.43 (3), p.1167-1176</ispartof><rights>Youke Publishing Co.,Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-925658f9d42e4ee9323be36cf3fa5e39faceeb0d32e23f15388975f32bdddc223</citedby><cites>FETCH-LOGICAL-c319t-925658f9d42e4ee9323be36cf3fa5e39faceeb0d32e23f15388975f32bdddc223</cites><orcidid>0000-0002-2281-2689 ; 0000-0001-6548-207X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12598-023-02469-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12598-023-02469-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Wang, Meng-Fei</creatorcontrib><creatorcontrib>Lai, Hua-Jun</creatorcontrib><creatorcontrib>Liang, Ji-Sheng</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Ding, Wang-Yang</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Peng, Ying</creatorcontrib><creatorcontrib>Liu, Cheng-Yan</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><title>Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia (ZrO
2
) composite strategy was applied to an n-type SiGe alloy, tremendously elevating its TE performance. After mechanical alloying and spark plasma sintering (SPS) processes, the ZrO
2
induced the formation of nanopores in the SiGe matrix via phosphorus adsorption. Moreover, such increase in porosity enhanced the phonon scattering and dramatically suppressed lattice thermal conductivity, from 2.83 to 1.59 W·m
−1
·K
−1
at 873 K. Additionally, reduced phosphorus doping led to an increase in Seebeck coefficients and a relatively minor decrease in electrical conductivity. The power factor didn’t deteriorate significantly, either, as its maximum of ~ 3.43 mW·m
−1
·K
−2
was achieved at 873 K with (Si
0.8
Ge
0.2
)
0.097
P
0.03
(ZrO
2
)
0.003
. In short, a peak figure of merit (
ZT
) of ~ 1.27 at 873 K and an average
ZT
~ 0.7 from 323 to 873 K were obtained. This study demonstrates that the electrical and thermal transportation of SiGe material can be synergistically tuned by compositing ZrO
2
, illustrating a novel strategy to optimize the TE properties of bulk materials.
Graphical abstract</description><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Electrical resistivity</subject><subject>Energy</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Maintenance costs</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Mechanical alloying</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Original Article</subject><subject>Phosphorus</subject><subject>Physical Chemistry</subject><subject>Plasma sintering</subject><subject>Porosity</subject><subject>Power factor</subject><subject>Seebeck effect</subject><subject>Silicon germanides</subject><subject>Sintering (powder metallurgy)</subject><subject>Spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Zirconium dioxide</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURQdRsFb_gKuA69F8zFeWUmoVCl2oGzdhJvPSpswkY5Ja5t-bOoI7F488yLn3wUmSW4LvCcblgyc051WKKYuTFTzlZ8mMVEWZlqTKz-OOMUlxTsllcuX9HuMsKwo8S9zS7GojoUVhB6630IEMTks0gFPW9ac_BKZuuog0I5K2H6zXQZst-nAbirRBJg3jAOhVrwDVXWdHdNRhhzp7nErrLsZMe5BBf-kwXicXqu483Py-8-T9afm2eE7Xm9XL4nGdSkZ4SDnNi7xSvM0oZACcUdYAK6Riqs6BcVVLgAa3jAJliuSsqniZK0abtm0lpWye3E29g7OfB_BB7O3BmXhSUE6riBc4ixSdKOms9w6UGJzuazcKgsXJrZjciuhW_LgVPIbYFPIRNltwf9X_pL4BpAJ-og</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Wang, Meng-Fei</creator><creator>Lai, Hua-Jun</creator><creator>Liang, Ji-Sheng</creator><creator>Chen, Jun-Liang</creator><creator>Ding, Wang-Yang</creator><creator>Zhou, Qi</creator><creator>Peng, Ying</creator><creator>Liu, Cheng-Yan</creator><creator>Miao, Lei</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2281-2689</orcidid><orcidid>https://orcid.org/0000-0001-6548-207X</orcidid></search><sort><creationdate>20240301</creationdate><title>Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity</title><author>Wang, Meng-Fei ; Lai, Hua-Jun ; Liang, Ji-Sheng ; Chen, Jun-Liang ; Ding, Wang-Yang ; Zhou, Qi ; Peng, Ying ; Liu, Cheng-Yan ; Miao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-925658f9d42e4ee9323be36cf3fa5e39faceeb0d32e23f15388975f32bdddc223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Electrical resistivity</topic><topic>Energy</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Maintenance costs</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Mechanical alloying</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Original Article</topic><topic>Phosphorus</topic><topic>Physical Chemistry</topic><topic>Plasma sintering</topic><topic>Porosity</topic><topic>Power factor</topic><topic>Seebeck effect</topic><topic>Silicon germanides</topic><topic>Sintering (powder metallurgy)</topic><topic>Spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Meng-Fei</creatorcontrib><creatorcontrib>Lai, Hua-Jun</creatorcontrib><creatorcontrib>Liang, Ji-Sheng</creatorcontrib><creatorcontrib>Chen, Jun-Liang</creatorcontrib><creatorcontrib>Ding, Wang-Yang</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Peng, Ying</creatorcontrib><creatorcontrib>Liu, Cheng-Yan</creatorcontrib><creatorcontrib>Miao, Lei</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Meng-Fei</au><au>Lai, Hua-Jun</au><au>Liang, Ji-Sheng</au><au>Chen, Jun-Liang</au><au>Ding, Wang-Yang</au><au>Zhou, Qi</au><au>Peng, Ying</au><au>Liu, Cheng-Yan</au><au>Miao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>43</volume><issue>3</issue><spage>1167</spage><epage>1176</epage><pages>1167-1176</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>SiGe-based thermoelectric (TE) materials have gained increasing interests due to their low maintenance costs, environmental friendliness and long lifespan. However, the intrinsically high thermal conductivity of Si-based materials also results in poor TE properties. In this investigation, a zirconia (ZrO
2
) composite strategy was applied to an n-type SiGe alloy, tremendously elevating its TE performance. After mechanical alloying and spark plasma sintering (SPS) processes, the ZrO
2
induced the formation of nanopores in the SiGe matrix via phosphorus adsorption. Moreover, such increase in porosity enhanced the phonon scattering and dramatically suppressed lattice thermal conductivity, from 2.83 to 1.59 W·m
−1
·K
−1
at 873 K. Additionally, reduced phosphorus doping led to an increase in Seebeck coefficients and a relatively minor decrease in electrical conductivity. The power factor didn’t deteriorate significantly, either, as its maximum of ~ 3.43 mW·m
−1
·K
−2
was achieved at 873 K with (Si
0.8
Ge
0.2
)
0.097
P
0.03
(ZrO
2
)
0.003
. In short, a peak figure of merit (
ZT
) of ~ 1.27 at 873 K and an average
ZT
~ 0.7 from 323 to 873 K were obtained. This study demonstrates that the electrical and thermal transportation of SiGe material can be synergistically tuned by compositing ZrO
2
, illustrating a novel strategy to optimize the TE properties of bulk materials.
Graphical abstract</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-023-02469-9</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2281-2689</orcidid><orcidid>https://orcid.org/0000-0001-6548-207X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2024-03, Vol.43 (3), p.1167-1176 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_2928889604 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Biomaterials Chemistry and Materials Science Electrical resistivity Energy Figure of merit Heat conductivity Heat transfer Maintenance costs Materials Engineering Materials Science Mechanical alloying Metallic Materials Nanoscale Science and Technology Original Article Phosphorus Physical Chemistry Plasma sintering Porosity Power factor Seebeck effect Silicon germanides Sintering (powder metallurgy) Spark plasma sintering Thermal conductivity Thermoelectric materials Zirconium dioxide |
title | Enhanced thermoelectric performance enabled by compositing ZrO2 in n-type SiGe alloy with low thermal conductivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20thermoelectric%20performance%20enabled%20by%20compositing%20ZrO2%20in%20n-type%20SiGe%20alloy%20with%20low%20thermal%20conductivity&rft.jtitle=Rare%20metals&rft.au=Wang,%20Meng-Fei&rft.date=2024-03-01&rft.volume=43&rft.issue=3&rft.spage=1167&rft.epage=1176&rft.pages=1167-1176&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-023-02469-9&rft_dat=%3Cproquest_cross%3E2928889604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928889604&rft_id=info:pmid/&rfr_iscdi=true |