A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation
High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI)...
Gespeichert in:
Veröffentlicht in: | Journal of civil structural health monitoring 2024-02, Vol.14 (2), p.431-447 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 447 |
---|---|
container_issue | 2 |
container_start_page | 431 |
container_title | Journal of civil structural health monitoring |
container_volume | 14 |
creator | Cao, Enhua Bao, Tengfei Liu, Yongtao Li, Hui Yuan, Rongyao Hu, Shaopei |
description | High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI) to address CMVs of dam deformation. The Temporal-Spatio Extreme Learning Machine (TsELM) is the core of DE, which exploits the short-term superiority of temporal model to estimate part of the missing segment, providing more reliable modeling information for the imputation of the remaining data. Afterward, the DE components and historical data are incorporated into the training sample and ELM-based QI is performed to obtain the complete simulation results. Analysis shows that the hierarchical imputation method requires fewer parameters and is conducive to constructing a unified imputation framework. Meanwhile, the imputation accuracy of the method is higher than that of traditional models, and it is applicable to dam projects with different deformation sampling frequencies. |
doi_str_mv | 10.1007/s13349-023-00733-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928888680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928888680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-755540743cd8a6dbec7f46b1870a371afa7162923d4834f684484dc88749ef0c3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEEhX0B1hZYh2wYyd2llXFS6rEBtbW1A-a0sSp7RTxH3wwToNghzee8cy5M_LNsiuCbwjG_DYQSlmd44LmKaU0JyfZrCA1zkvG69PfuCzOs3kIW4wxEUVV0WKWfS2QhgjIdBvolGlNF_M1BKPRfgDtITYKNW0_xBS5DlkPrflw_h1Z55FyXTBqiM3BoLYJoene0AF2gwnHUqONH59CP8LRtL3zsENqAx5UTLWQ1ANyNq3QIm2SZHscc5mdWdgFM_-5L7LX-7uX5WO-en54Wi5WuaKkjjkvy5JhzqjSAiq9NopbVq2J4BgoJ2CBk6qoC6qZoMxWgjHBtBKCs9pYrOhFdj3p9t7t09ZRbt3guzRSJkykUwmcuoqpS3kXgjdW9r5pwX9KguVogJwMkMkAeTRAkgTRCQr9-AfG_0n_Q30DeIuMSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928888680</pqid></control><display><type>article</type><title>A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation</title><source>SpringerNature Journals</source><creator>Cao, Enhua ; Bao, Tengfei ; Liu, Yongtao ; Li, Hui ; Yuan, Rongyao ; Hu, Shaopei</creator><creatorcontrib>Cao, Enhua ; Bao, Tengfei ; Liu, Yongtao ; Li, Hui ; Yuan, Rongyao ; Hu, Shaopei</creatorcontrib><description>High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI) to address CMVs of dam deformation. The Temporal-Spatio Extreme Learning Machine (TsELM) is the core of DE, which exploits the short-term superiority of temporal model to estimate part of the missing segment, providing more reliable modeling information for the imputation of the remaining data. Afterward, the DE components and historical data are incorporated into the training sample and ELM-based QI is performed to obtain the complete simulation results. Analysis shows that the hierarchical imputation method requires fewer parameters and is conducive to constructing a unified imputation framework. Meanwhile, the imputation accuracy of the method is higher than that of traditional models, and it is applicable to dam projects with different deformation sampling frequencies.</description><identifier>ISSN: 2190-5452</identifier><identifier>EISSN: 2190-5479</identifier><identifier>DOI: 10.1007/s13349-023-00733-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Civil Engineering ; Control ; Deformation ; Dynamical Systems ; Engineering ; Machine learning ; Measurement Science and Instrumentation ; Original Paper ; Vibration</subject><ispartof>Journal of civil structural health monitoring, 2024-02, Vol.14 (2), p.431-447</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-755540743cd8a6dbec7f46b1870a371afa7162923d4834f684484dc88749ef0c3</citedby><cites>FETCH-LOGICAL-c319t-755540743cd8a6dbec7f46b1870a371afa7162923d4834f684484dc88749ef0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13349-023-00733-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13349-023-00733-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cao, Enhua</creatorcontrib><creatorcontrib>Bao, Tengfei</creatorcontrib><creatorcontrib>Liu, Yongtao</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Yuan, Rongyao</creatorcontrib><creatorcontrib>Hu, Shaopei</creatorcontrib><title>A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation</title><title>Journal of civil structural health monitoring</title><addtitle>J Civil Struct Health Monit</addtitle><description>High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI) to address CMVs of dam deformation. The Temporal-Spatio Extreme Learning Machine (TsELM) is the core of DE, which exploits the short-term superiority of temporal model to estimate part of the missing segment, providing more reliable modeling information for the imputation of the remaining data. Afterward, the DE components and historical data are incorporated into the training sample and ELM-based QI is performed to obtain the complete simulation results. Analysis shows that the hierarchical imputation method requires fewer parameters and is conducive to constructing a unified imputation framework. Meanwhile, the imputation accuracy of the method is higher than that of traditional models, and it is applicable to dam projects with different deformation sampling frequencies.</description><subject>Artificial neural networks</subject><subject>Civil Engineering</subject><subject>Control</subject><subject>Deformation</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Measurement Science and Instrumentation</subject><subject>Original Paper</subject><subject>Vibration</subject><issn>2190-5452</issn><issn>2190-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRSMEEhX0B1hZYh2wYyd2llXFS6rEBtbW1A-a0sSp7RTxH3wwToNghzee8cy5M_LNsiuCbwjG_DYQSlmd44LmKaU0JyfZrCA1zkvG69PfuCzOs3kIW4wxEUVV0WKWfS2QhgjIdBvolGlNF_M1BKPRfgDtITYKNW0_xBS5DlkPrflw_h1Z55FyXTBqiM3BoLYJoene0AF2gwnHUqONH59CP8LRtL3zsENqAx5UTLWQ1ANyNq3QIm2SZHscc5mdWdgFM_-5L7LX-7uX5WO-en54Wi5WuaKkjjkvy5JhzqjSAiq9NopbVq2J4BgoJ2CBk6qoC6qZoMxWgjHBtBKCs9pYrOhFdj3p9t7t09ZRbt3guzRSJkykUwmcuoqpS3kXgjdW9r5pwX9KguVogJwMkMkAeTRAkgTRCQr9-AfG_0n_Q30DeIuMSg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Cao, Enhua</creator><creator>Bao, Tengfei</creator><creator>Liu, Yongtao</creator><creator>Li, Hui</creator><creator>Yuan, Rongyao</creator><creator>Hu, Shaopei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation</title><author>Cao, Enhua ; Bao, Tengfei ; Liu, Yongtao ; Li, Hui ; Yuan, Rongyao ; Hu, Shaopei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-755540743cd8a6dbec7f46b1870a371afa7162923d4834f684484dc88749ef0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Civil Engineering</topic><topic>Control</topic><topic>Deformation</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Measurement Science and Instrumentation</topic><topic>Original Paper</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Enhua</creatorcontrib><creatorcontrib>Bao, Tengfei</creatorcontrib><creatorcontrib>Liu, Yongtao</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Yuan, Rongyao</creatorcontrib><creatorcontrib>Hu, Shaopei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of civil structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Enhua</au><au>Bao, Tengfei</au><au>Liu, Yongtao</au><au>Li, Hui</au><au>Yuan, Rongyao</au><au>Hu, Shaopei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation</atitle><jtitle>Journal of civil structural health monitoring</jtitle><stitle>J Civil Struct Health Monit</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>431</spage><epage>447</epage><pages>431-447</pages><issn>2190-5452</issn><eissn>2190-5479</eissn><abstract>High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI) to address CMVs of dam deformation. The Temporal-Spatio Extreme Learning Machine (TsELM) is the core of DE, which exploits the short-term superiority of temporal model to estimate part of the missing segment, providing more reliable modeling information for the imputation of the remaining data. Afterward, the DE components and historical data are incorporated into the training sample and ELM-based QI is performed to obtain the complete simulation results. Analysis shows that the hierarchical imputation method requires fewer parameters and is conducive to constructing a unified imputation framework. Meanwhile, the imputation accuracy of the method is higher than that of traditional models, and it is applicable to dam projects with different deformation sampling frequencies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13349-023-00733-1</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5452 |
ispartof | Journal of civil structural health monitoring, 2024-02, Vol.14 (2), p.431-447 |
issn | 2190-5452 2190-5479 |
language | eng |
recordid | cdi_proquest_journals_2928888680 |
source | SpringerNature Journals |
subjects | Artificial neural networks Civil Engineering Control Deformation Dynamical Systems Engineering Machine learning Measurement Science and Instrumentation Original Paper Vibration |
title | A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20enhancement-based%20quadratic%20imputation%20framework%20for%20consecutive%20missing%20values%20considering%20spatiotemporal%20characteristics%20of%20dam%20deformation&rft.jtitle=Journal%20of%20civil%20structural%20health%20monitoring&rft.au=Cao,%20Enhua&rft.date=2024-02-01&rft.volume=14&rft.issue=2&rft.spage=431&rft.epage=447&rft.pages=431-447&rft.issn=2190-5452&rft.eissn=2190-5479&rft_id=info:doi/10.1007/s13349-023-00733-1&rft_dat=%3Cproquest_cross%3E2928888680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928888680&rft_id=info:pmid/&rfr_iscdi=true |