A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation

High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of civil structural health monitoring 2024-02, Vol.14 (2), p.431-447
Hauptverfasser: Cao, Enhua, Bao, Tengfei, Liu, Yongtao, Li, Hui, Yuan, Rongyao, Hu, Shaopei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 2
container_start_page 431
container_title Journal of civil structural health monitoring
container_volume 14
creator Cao, Enhua
Bao, Tengfei
Liu, Yongtao
Li, Hui
Yuan, Rongyao
Hu, Shaopei
description High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI) to address CMVs of dam deformation. The Temporal-Spatio Extreme Learning Machine (TsELM) is the core of DE, which exploits the short-term superiority of temporal model to estimate part of the missing segment, providing more reliable modeling information for the imputation of the remaining data. Afterward, the DE components and historical data are incorporated into the training sample and ELM-based QI is performed to obtain the complete simulation results. Analysis shows that the hierarchical imputation method requires fewer parameters and is conducive to constructing a unified imputation framework. Meanwhile, the imputation accuracy of the method is higher than that of traditional models, and it is applicable to dam projects with different deformation sampling frequencies.
doi_str_mv 10.1007/s13349-023-00733-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928888680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928888680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-755540743cd8a6dbec7f46b1870a371afa7162923d4834f684484dc88749ef0c3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRSMEEhX0B1hZYh2wYyd2llXFS6rEBtbW1A-a0sSp7RTxH3wwToNghzee8cy5M_LNsiuCbwjG_DYQSlmd44LmKaU0JyfZrCA1zkvG69PfuCzOs3kIW4wxEUVV0WKWfS2QhgjIdBvolGlNF_M1BKPRfgDtITYKNW0_xBS5DlkPrflw_h1Z55FyXTBqiM3BoLYJoene0AF2gwnHUqONH59CP8LRtL3zsENqAx5UTLWQ1ANyNq3QIm2SZHscc5mdWdgFM_-5L7LX-7uX5WO-en54Wi5WuaKkjjkvy5JhzqjSAiq9NopbVq2J4BgoJ2CBk6qoC6qZoMxWgjHBtBKCs9pYrOhFdj3p9t7t09ZRbt3guzRSJkykUwmcuoqpS3kXgjdW9r5pwX9KguVogJwMkMkAeTRAkgTRCQr9-AfG_0n_Q30DeIuMSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928888680</pqid></control><display><type>article</type><title>A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation</title><source>SpringerNature Journals</source><creator>Cao, Enhua ; Bao, Tengfei ; Liu, Yongtao ; Li, Hui ; Yuan, Rongyao ; Hu, Shaopei</creator><creatorcontrib>Cao, Enhua ; Bao, Tengfei ; Liu, Yongtao ; Li, Hui ; Yuan, Rongyao ; Hu, Shaopei</creatorcontrib><description>High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI) to address CMVs of dam deformation. The Temporal-Spatio Extreme Learning Machine (TsELM) is the core of DE, which exploits the short-term superiority of temporal model to estimate part of the missing segment, providing more reliable modeling information for the imputation of the remaining data. Afterward, the DE components and historical data are incorporated into the training sample and ELM-based QI is performed to obtain the complete simulation results. Analysis shows that the hierarchical imputation method requires fewer parameters and is conducive to constructing a unified imputation framework. Meanwhile, the imputation accuracy of the method is higher than that of traditional models, and it is applicable to dam projects with different deformation sampling frequencies.</description><identifier>ISSN: 2190-5452</identifier><identifier>EISSN: 2190-5479</identifier><identifier>DOI: 10.1007/s13349-023-00733-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Civil Engineering ; Control ; Deformation ; Dynamical Systems ; Engineering ; Machine learning ; Measurement Science and Instrumentation ; Original Paper ; Vibration</subject><ispartof>Journal of civil structural health monitoring, 2024-02, Vol.14 (2), p.431-447</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-755540743cd8a6dbec7f46b1870a371afa7162923d4834f684484dc88749ef0c3</citedby><cites>FETCH-LOGICAL-c319t-755540743cd8a6dbec7f46b1870a371afa7162923d4834f684484dc88749ef0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13349-023-00733-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13349-023-00733-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cao, Enhua</creatorcontrib><creatorcontrib>Bao, Tengfei</creatorcontrib><creatorcontrib>Liu, Yongtao</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Yuan, Rongyao</creatorcontrib><creatorcontrib>Hu, Shaopei</creatorcontrib><title>A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation</title><title>Journal of civil structural health monitoring</title><addtitle>J Civil Struct Health Monit</addtitle><description>High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI) to address CMVs of dam deformation. The Temporal-Spatio Extreme Learning Machine (TsELM) is the core of DE, which exploits the short-term superiority of temporal model to estimate part of the missing segment, providing more reliable modeling information for the imputation of the remaining data. Afterward, the DE components and historical data are incorporated into the training sample and ELM-based QI is performed to obtain the complete simulation results. Analysis shows that the hierarchical imputation method requires fewer parameters and is conducive to constructing a unified imputation framework. Meanwhile, the imputation accuracy of the method is higher than that of traditional models, and it is applicable to dam projects with different deformation sampling frequencies.</description><subject>Artificial neural networks</subject><subject>Civil Engineering</subject><subject>Control</subject><subject>Deformation</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Machine learning</subject><subject>Measurement Science and Instrumentation</subject><subject>Original Paper</subject><subject>Vibration</subject><issn>2190-5452</issn><issn>2190-5479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRSMEEhX0B1hZYh2wYyd2llXFS6rEBtbW1A-a0sSp7RTxH3wwToNghzee8cy5M_LNsiuCbwjG_DYQSlmd44LmKaU0JyfZrCA1zkvG69PfuCzOs3kIW4wxEUVV0WKWfS2QhgjIdBvolGlNF_M1BKPRfgDtITYKNW0_xBS5DlkPrflw_h1Z55FyXTBqiM3BoLYJoene0AF2gwnHUqONH59CP8LRtL3zsENqAx5UTLWQ1ANyNq3QIm2SZHscc5mdWdgFM_-5L7LX-7uX5WO-en54Wi5WuaKkjjkvy5JhzqjSAiq9NopbVq2J4BgoJ2CBk6qoC6qZoMxWgjHBtBKCs9pYrOhFdj3p9t7t09ZRbt3guzRSJkykUwmcuoqpS3kXgjdW9r5pwX9KguVogJwMkMkAeTRAkgTRCQr9-AfG_0n_Q30DeIuMSg</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Cao, Enhua</creator><creator>Bao, Tengfei</creator><creator>Liu, Yongtao</creator><creator>Li, Hui</creator><creator>Yuan, Rongyao</creator><creator>Hu, Shaopei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation</title><author>Cao, Enhua ; Bao, Tengfei ; Liu, Yongtao ; Li, Hui ; Yuan, Rongyao ; Hu, Shaopei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-755540743cd8a6dbec7f46b1870a371afa7162923d4834f684484dc88749ef0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Civil Engineering</topic><topic>Control</topic><topic>Deformation</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Machine learning</topic><topic>Measurement Science and Instrumentation</topic><topic>Original Paper</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Enhua</creatorcontrib><creatorcontrib>Bao, Tengfei</creatorcontrib><creatorcontrib>Liu, Yongtao</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Yuan, Rongyao</creatorcontrib><creatorcontrib>Hu, Shaopei</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of civil structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Enhua</au><au>Bao, Tengfei</au><au>Liu, Yongtao</au><au>Li, Hui</au><au>Yuan, Rongyao</au><au>Hu, Shaopei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation</atitle><jtitle>Journal of civil structural health monitoring</jtitle><stitle>J Civil Struct Health Monit</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>14</volume><issue>2</issue><spage>431</spage><epage>447</epage><pages>431-447</pages><issn>2190-5452</issn><eissn>2190-5479</eissn><abstract>High-quality prototype observations are the basis for a comprehensive analysis of dam structural behavior. However, missing values, especially consecutive missing values (CMVs), are a major barrier. This paper innovatively proposes the concepts of data enhancement (DE) and quadratic imputation (QI) to address CMVs of dam deformation. The Temporal-Spatio Extreme Learning Machine (TsELM) is the core of DE, which exploits the short-term superiority of temporal model to estimate part of the missing segment, providing more reliable modeling information for the imputation of the remaining data. Afterward, the DE components and historical data are incorporated into the training sample and ELM-based QI is performed to obtain the complete simulation results. Analysis shows that the hierarchical imputation method requires fewer parameters and is conducive to constructing a unified imputation framework. Meanwhile, the imputation accuracy of the method is higher than that of traditional models, and it is applicable to dam projects with different deformation sampling frequencies.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13349-023-00733-1</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-5452
ispartof Journal of civil structural health monitoring, 2024-02, Vol.14 (2), p.431-447
issn 2190-5452
2190-5479
language eng
recordid cdi_proquest_journals_2928888680
source SpringerNature Journals
subjects Artificial neural networks
Civil Engineering
Control
Deformation
Dynamical Systems
Engineering
Machine learning
Measurement Science and Instrumentation
Original Paper
Vibration
title A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%20enhancement-based%20quadratic%20imputation%20framework%20for%20consecutive%20missing%20values%20considering%20spatiotemporal%20characteristics%20of%20dam%20deformation&rft.jtitle=Journal%20of%20civil%20structural%20health%20monitoring&rft.au=Cao,%20Enhua&rft.date=2024-02-01&rft.volume=14&rft.issue=2&rft.spage=431&rft.epage=447&rft.pages=431-447&rft.issn=2190-5452&rft.eissn=2190-5479&rft_id=info:doi/10.1007/s13349-023-00733-1&rft_dat=%3Cproquest_cross%3E2928888680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928888680&rft_id=info:pmid/&rfr_iscdi=true