Solving Fuzzy Nonlinear Optimization Problems Using Null Set Concept

In the present paper, we propose a new method for minimizing the fuzzy single-objective function under fuzzy constraints. The algorithm of the method is based on the use of the null set concept. The null set concept allows us to use partial ordering for subtraction between fuzzy numbers, such as sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fuzzy systems 2024-03, Vol.26 (2), p.674-685
Hauptverfasser: Sama, Jean De La Croix, Some, Kounhinir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 685
container_issue 2
container_start_page 674
container_title International journal of fuzzy systems
container_volume 26
creator Sama, Jean De La Croix
Some, Kounhinir
description In the present paper, we propose a new method for minimizing the fuzzy single-objective function under fuzzy constraints. The algorithm of the method is based on the use of the null set concept. The null set concept allows us to use partial ordering for subtraction between fuzzy numbers, such as simple subtraction and the Hukuhara difference. From this, we have defined the types of solutions for a single-objective optimization problem, namely optimal solutions and H-optimal solutions. In practice, the method starts by turning the initial optimization problem into a deterministic nonlinear bi-objective optimization problem. Then, it uses Karush–Kuhn–Tucker’s optimality conditions to find the best solution of the bi-objective optimization problem. Finally, it deduces the solution to the initial problem using fuzzy algebraic operations to convert the deterministic solution into a fuzzy solution. Through some theorems, we have demonstrated that the obtained solutions by our method are optimal or H-optimal. Furthermore, the resolution of five examples of which a real-world problem has allowed us to compare our algorithm to other algorithms taken into the literature. With these results, our method can be seen as a good choice for solving a single-objective optimization problem where the objective and constraint functions are fuzzy.
doi_str_mv 10.1007/s40815-023-01626-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928720816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928720816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ba201fcc4879085eb58ff08570905f857518934ed73628101bd913129a23d7b93</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4MoOOa-gKeA52jeS9M0R5lOheGEuXNou3RUuqYmrbB9ejMrePP03uH3_7_Hj5Br4LfAuboLCc9AMo6CcUgxZeqMTBC0ZgIBzskEZIoME6UvySyEuuACMBUyFRPysHbNV93u6GI4Hg_01bVN3drc01XX1_v6mPe1a-mbd0Vj94Fuwol9HZqGrm1P564tbddfkYsqb4Kd_c4p2Swe3-fPbLl6epnfL1kpQPesyJFDVZZJpjTPpC1kVlVxUVxzWcUpIdMisVslUsyAQ7HVEF_VOYqtKrSYkpuxt_Puc7ChNx9u8G08aVBjpjB6SCOFI1V6F4K3lel8vc_9wQA3J2FmFGaiMPMjzKgYEmMoRLjdWf9X_U_qGzxPbAk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928720816</pqid></control><display><type>article</type><title>Solving Fuzzy Nonlinear Optimization Problems Using Null Set Concept</title><source>SpringerLink Journals</source><creator>Sama, Jean De La Croix ; Some, Kounhinir</creator><creatorcontrib>Sama, Jean De La Croix ; Some, Kounhinir</creatorcontrib><description>In the present paper, we propose a new method for minimizing the fuzzy single-objective function under fuzzy constraints. The algorithm of the method is based on the use of the null set concept. The null set concept allows us to use partial ordering for subtraction between fuzzy numbers, such as simple subtraction and the Hukuhara difference. From this, we have defined the types of solutions for a single-objective optimization problem, namely optimal solutions and H-optimal solutions. In practice, the method starts by turning the initial optimization problem into a deterministic nonlinear bi-objective optimization problem. Then, it uses Karush–Kuhn–Tucker’s optimality conditions to find the best solution of the bi-objective optimization problem. Finally, it deduces the solution to the initial problem using fuzzy algebraic operations to convert the deterministic solution into a fuzzy solution. Through some theorems, we have demonstrated that the obtained solutions by our method are optimal or H-optimal. Furthermore, the resolution of five examples of which a real-world problem has allowed us to compare our algorithm to other algorithms taken into the literature. With these results, our method can be seen as a good choice for solving a single-objective optimization problem where the objective and constraint functions are fuzzy.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-023-01626-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computational Intelligence ; Engineering ; Fuzzy sets ; Management Science ; Mathematical analysis ; Methods ; Operations Research ; Optimization ; Subtraction</subject><ispartof>International journal of fuzzy systems, 2024-03, Vol.26 (2), p.674-685</ispartof><rights>The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ba201fcc4879085eb58ff08570905f857518934ed73628101bd913129a23d7b93</citedby><cites>FETCH-LOGICAL-c319t-ba201fcc4879085eb58ff08570905f857518934ed73628101bd913129a23d7b93</cites><orcidid>0000-0001-7437-6439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40815-023-01626-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40815-023-01626-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sama, Jean De La Croix</creatorcontrib><creatorcontrib>Some, Kounhinir</creatorcontrib><title>Solving Fuzzy Nonlinear Optimization Problems Using Null Set Concept</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>In the present paper, we propose a new method for minimizing the fuzzy single-objective function under fuzzy constraints. The algorithm of the method is based on the use of the null set concept. The null set concept allows us to use partial ordering for subtraction between fuzzy numbers, such as simple subtraction and the Hukuhara difference. From this, we have defined the types of solutions for a single-objective optimization problem, namely optimal solutions and H-optimal solutions. In practice, the method starts by turning the initial optimization problem into a deterministic nonlinear bi-objective optimization problem. Then, it uses Karush–Kuhn–Tucker’s optimality conditions to find the best solution of the bi-objective optimization problem. Finally, it deduces the solution to the initial problem using fuzzy algebraic operations to convert the deterministic solution into a fuzzy solution. Through some theorems, we have demonstrated that the obtained solutions by our method are optimal or H-optimal. Furthermore, the resolution of five examples of which a real-world problem has allowed us to compare our algorithm to other algorithms taken into the literature. With these results, our method can be seen as a good choice for solving a single-objective optimization problem where the objective and constraint functions are fuzzy.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Fuzzy sets</subject><subject>Management Science</subject><subject>Mathematical analysis</subject><subject>Methods</subject><subject>Operations Research</subject><subject>Optimization</subject><subject>Subtraction</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAUx4MoOOa-gKeA52jeS9M0R5lOheGEuXNou3RUuqYmrbB9ejMrePP03uH3_7_Hj5Br4LfAuboLCc9AMo6CcUgxZeqMTBC0ZgIBzskEZIoME6UvySyEuuACMBUyFRPysHbNV93u6GI4Hg_01bVN3drc01XX1_v6mPe1a-mbd0Vj94Fuwol9HZqGrm1P564tbddfkYsqb4Kd_c4p2Swe3-fPbLl6epnfL1kpQPesyJFDVZZJpjTPpC1kVlVxUVxzWcUpIdMisVslUsyAQ7HVEF_VOYqtKrSYkpuxt_Puc7ChNx9u8G08aVBjpjB6SCOFI1V6F4K3lel8vc_9wQA3J2FmFGaiMPMjzKgYEmMoRLjdWf9X_U_qGzxPbAk</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Sama, Jean De La Croix</creator><creator>Some, Kounhinir</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0001-7437-6439</orcidid></search><sort><creationdate>20240301</creationdate><title>Solving Fuzzy Nonlinear Optimization Problems Using Null Set Concept</title><author>Sama, Jean De La Croix ; Some, Kounhinir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ba201fcc4879085eb58ff08570905f857518934ed73628101bd913129a23d7b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Fuzzy sets</topic><topic>Management Science</topic><topic>Mathematical analysis</topic><topic>Methods</topic><topic>Operations Research</topic><topic>Optimization</topic><topic>Subtraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sama, Jean De La Croix</creatorcontrib><creatorcontrib>Some, Kounhinir</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sama, Jean De La Croix</au><au>Some, Kounhinir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving Fuzzy Nonlinear Optimization Problems Using Null Set Concept</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>26</volume><issue>2</issue><spage>674</spage><epage>685</epage><pages>674-685</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>In the present paper, we propose a new method for minimizing the fuzzy single-objective function under fuzzy constraints. The algorithm of the method is based on the use of the null set concept. The null set concept allows us to use partial ordering for subtraction between fuzzy numbers, such as simple subtraction and the Hukuhara difference. From this, we have defined the types of solutions for a single-objective optimization problem, namely optimal solutions and H-optimal solutions. In practice, the method starts by turning the initial optimization problem into a deterministic nonlinear bi-objective optimization problem. Then, it uses Karush–Kuhn–Tucker’s optimality conditions to find the best solution of the bi-objective optimization problem. Finally, it deduces the solution to the initial problem using fuzzy algebraic operations to convert the deterministic solution into a fuzzy solution. Through some theorems, we have demonstrated that the obtained solutions by our method are optimal or H-optimal. Furthermore, the resolution of five examples of which a real-world problem has allowed us to compare our algorithm to other algorithms taken into the literature. With these results, our method can be seen as a good choice for solving a single-objective optimization problem where the objective and constraint functions are fuzzy.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-023-01626-7</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7437-6439</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1562-2479
ispartof International journal of fuzzy systems, 2024-03, Vol.26 (2), p.674-685
issn 1562-2479
2199-3211
language eng
recordid cdi_proquest_journals_2928720816
source SpringerLink Journals
subjects Algorithms
Artificial Intelligence
Computational Intelligence
Engineering
Fuzzy sets
Management Science
Mathematical analysis
Methods
Operations Research
Optimization
Subtraction
title Solving Fuzzy Nonlinear Optimization Problems Using Null Set Concept
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20Fuzzy%20Nonlinear%20Optimization%20Problems%20Using%20Null%20Set%20Concept&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Sama,%20Jean%20De%20La%20Croix&rft.date=2024-03-01&rft.volume=26&rft.issue=2&rft.spage=674&rft.epage=685&rft.pages=674-685&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-023-01626-7&rft_dat=%3Cproquest_cross%3E2928720816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928720816&rft_id=info:pmid/&rfr_iscdi=true