Entanglement Measure Based on Optimal Entanglement Witness

We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-incr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Yang, Nan, Wu, Jiaji, Dong, Xianyun, Xiao, Longyu, Wang, Jing, Li, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yang, Nan
Wu, Jiaji
Dong, Xianyun
Xiao, Longyu
Wang, Jing
Li, Ming
description We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-increase under local operations and classical communication(LOCC). More than that, we give a specific mathematical expression for the lower bound of this entanglement measure for any bipartite mixed states. We further improve the lower bound for 2\( \otimes \)2 systems. Finally, we numerically simulate the lower bound of several types of specific quantum states.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928718835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928718835</sourcerecordid><originalsourceid>FETCH-proquest_journals_29287188353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcs0rScxLz0nNTc0rUfBNTSwuLUpVcEosTk1RyM9T8C8oycxNzFFAURWeWZKXWlzMw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRpZGFuaGFhbGpsbEqQIAyOU2_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928718835</pqid></control><display><type>article</type><title>Entanglement Measure Based on Optimal Entanglement Witness</title><source>Freely Accessible Journals</source><creator>Yang, Nan ; Wu, Jiaji ; Dong, Xianyun ; Xiao, Longyu ; Wang, Jing ; Li, Ming</creator><creatorcontrib>Yang, Nan ; Wu, Jiaji ; Dong, Xianyun ; Xiao, Longyu ; Wang, Jing ; Li, Ming</creatorcontrib><description>We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-increase under local operations and classical communication(LOCC). More than that, we give a specific mathematical expression for the lower bound of this entanglement measure for any bipartite mixed states. We further improve the lower bound for 2\( \otimes \)2 systems. Finally, we numerically simulate the lower bound of several types of specific quantum states.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Lower bounds</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Wu, Jiaji</creatorcontrib><creatorcontrib>Dong, Xianyun</creatorcontrib><creatorcontrib>Xiao, Longyu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><title>Entanglement Measure Based on Optimal Entanglement Witness</title><title>arXiv.org</title><description>We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-increase under local operations and classical communication(LOCC). More than that, we give a specific mathematical expression for the lower bound of this entanglement measure for any bipartite mixed states. We further improve the lower bound for 2\( \otimes \)2 systems. Finally, we numerically simulate the lower bound of several types of specific quantum states.</description><subject>Convexity</subject><subject>Lower bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcs0rScxLz0nNTc0rUfBNTSwuLUpVcEosTk1RyM9T8C8oycxNzFFAURWeWZKXWlzMw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRpZGFuaGFhbGpsbEqQIAyOU2_g</recordid><startdate>20240219</startdate><enddate>20240219</enddate><creator>Yang, Nan</creator><creator>Wu, Jiaji</creator><creator>Dong, Xianyun</creator><creator>Xiao, Longyu</creator><creator>Wang, Jing</creator><creator>Li, Ming</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240219</creationdate><title>Entanglement Measure Based on Optimal Entanglement Witness</title><author>Yang, Nan ; Wu, Jiaji ; Dong, Xianyun ; Xiao, Longyu ; Wang, Jing ; Li, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29287188353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convexity</topic><topic>Lower bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Wu, Jiaji</creatorcontrib><creatorcontrib>Dong, Xianyun</creatorcontrib><creatorcontrib>Xiao, Longyu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Nan</au><au>Wu, Jiaji</au><au>Dong, Xianyun</au><au>Xiao, Longyu</au><au>Wang, Jing</au><au>Li, Ming</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Entanglement Measure Based on Optimal Entanglement Witness</atitle><jtitle>arXiv.org</jtitle><date>2024-02-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-increase under local operations and classical communication(LOCC). More than that, we give a specific mathematical expression for the lower bound of this entanglement measure for any bipartite mixed states. We further improve the lower bound for 2\( \otimes \)2 systems. Finally, we numerically simulate the lower bound of several types of specific quantum states.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2928718835
source Freely Accessible Journals
subjects Convexity
Lower bounds
title Entanglement Measure Based on Optimal Entanglement Witness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Entanglement%20Measure%20Based%20on%20Optimal%20Entanglement%20Witness&rft.jtitle=arXiv.org&rft.au=Yang,%20Nan&rft.date=2024-02-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2928718835%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928718835&rft_id=info:pmid/&rfr_iscdi=true