Entanglement Measure Based on Optimal Entanglement Witness
We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-incr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Yang, Nan Wu, Jiaji Dong, Xianyun Xiao, Longyu Wang, Jing Li, Ming |
description | We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-increase under local operations and classical communication(LOCC). More than that, we give a specific mathematical expression for the lower bound of this entanglement measure for any bipartite mixed states. We further improve the lower bound for 2\( \otimes \)2 systems. Finally, we numerically simulate the lower bound of several types of specific quantum states. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928718835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928718835</sourcerecordid><originalsourceid>FETCH-proquest_journals_29287188353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcs0rScxLz0nNTc0rUfBNTSwuLUpVcEosTk1RyM9T8C8oycxNzFFAURWeWZKXWlzMw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRpZGFuaGFhbGpsbEqQIAyOU2_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928718835</pqid></control><display><type>article</type><title>Entanglement Measure Based on Optimal Entanglement Witness</title><source>Freely Accessible Journals</source><creator>Yang, Nan ; Wu, Jiaji ; Dong, Xianyun ; Xiao, Longyu ; Wang, Jing ; Li, Ming</creator><creatorcontrib>Yang, Nan ; Wu, Jiaji ; Dong, Xianyun ; Xiao, Longyu ; Wang, Jing ; Li, Ming</creatorcontrib><description>We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-increase under local operations and classical communication(LOCC). More than that, we give a specific mathematical expression for the lower bound of this entanglement measure for any bipartite mixed states. We further improve the lower bound for 2\( \otimes \)2 systems. Finally, we numerically simulate the lower bound of several types of specific quantum states.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convexity ; Lower bounds</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Wu, Jiaji</creatorcontrib><creatorcontrib>Dong, Xianyun</creatorcontrib><creatorcontrib>Xiao, Longyu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><title>Entanglement Measure Based on Optimal Entanglement Witness</title><title>arXiv.org</title><description>We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-increase under local operations and classical communication(LOCC). More than that, we give a specific mathematical expression for the lower bound of this entanglement measure for any bipartite mixed states. We further improve the lower bound for 2\( \otimes \)2 systems. Finally, we numerically simulate the lower bound of several types of specific quantum states.</description><subject>Convexity</subject><subject>Lower bounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwcs0rScxLz0nNTc0rUfBNTSwuLUpVcEosTk1RyM9T8C8oycxNzFFAURWeWZKXWlzMw8CalphTnMoLpbkZlN1cQ5w9dAuK8gtLU4tL4rPyS4vygFLxRpZGFuaGFhbGpsbEqQIAyOU2_g</recordid><startdate>20240219</startdate><enddate>20240219</enddate><creator>Yang, Nan</creator><creator>Wu, Jiaji</creator><creator>Dong, Xianyun</creator><creator>Xiao, Longyu</creator><creator>Wang, Jing</creator><creator>Li, Ming</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240219</creationdate><title>Entanglement Measure Based on Optimal Entanglement Witness</title><author>Yang, Nan ; Wu, Jiaji ; Dong, Xianyun ; Xiao, Longyu ; Wang, Jing ; Li, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29287188353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Convexity</topic><topic>Lower bounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Nan</creatorcontrib><creatorcontrib>Wu, Jiaji</creatorcontrib><creatorcontrib>Dong, Xianyun</creatorcontrib><creatorcontrib>Xiao, Longyu</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Nan</au><au>Wu, Jiaji</au><au>Dong, Xianyun</au><au>Xiao, Longyu</au><au>Wang, Jing</au><au>Li, Ming</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Entanglement Measure Based on Optimal Entanglement Witness</atitle><jtitle>arXiv.org</jtitle><date>2024-02-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce a new entanglement measure based on optimal entanglement witness. First of all, we show that the entanglement measure satisfies some necessary properties, including zero entanglements for all separable states, convexity, continuity, invariance under local unitary operations and non-increase under local operations and classical communication(LOCC). More than that, we give a specific mathematical expression for the lower bound of this entanglement measure for any bipartite mixed states. We further improve the lower bound for 2\( \otimes \)2 systems. Finally, we numerically simulate the lower bound of several types of specific quantum states.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2928718835 |
source | Freely Accessible Journals |
subjects | Convexity Lower bounds |
title | Entanglement Measure Based on Optimal Entanglement Witness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A22%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Entanglement%20Measure%20Based%20on%20Optimal%20Entanglement%20Witness&rft.jtitle=arXiv.org&rft.au=Yang,%20Nan&rft.date=2024-02-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2928718835%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928718835&rft_id=info:pmid/&rfr_iscdi=true |