A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models
Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jones, Jaylen Mo, Lingbo Fosler-Lussier, Eric Sun, Huan |
description | Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions, the evaluation of these approaches remains underdeveloped. Previous automatic metrics for counter narrative evaluation lack alignment with human judgment as they rely on superficial reference comparisons instead of incorporating key aspects of counter narrative quality as evaluation criteria. To address prior evaluation limitations, we propose a novel evaluation framework prompting LLMs to provide scores and feedback for generated counter narrative candidates using 5 defined aspects derived from guidelines from counter narrative specialized NGOs. We found that LLM evaluators achieve strong alignment to human-annotated scores and feedback and outperform alternative metrics, indicating their potential as multi-aspect, reference-free and interpretable evaluators for counter narrative evaluation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928718637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928718637</sourcerecordid><originalsourceid>FETCH-proquest_journals_29287186373</originalsourceid><addsrcrecordid>eNqNir0OgjAURhsTE4nyDjdxJoFWfhwJgTiIk86k0ULA2uJti69vBx_A5Xwn-c6KBJSxJCoOlG5IaMwUxzHNcpqmLCC3Elon7RiVZhZ3Cw3yl_hofEKvESrtlBUIF47I7bgIqBcunVetwJlRDXDmOAhPNTjupdUPIc2OrHsujQh_uyX7pr5Wp2hG_XbC2G7SDpW_OnqkRZ4UGcvZf9UXi2NAjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928718637</pqid></control><display><type>article</type><title>A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models</title><source>Free E- Journals</source><creator>Jones, Jaylen ; Mo, Lingbo ; Fosler-Lussier, Eric ; Sun, Huan</creator><creatorcontrib>Jones, Jaylen ; Mo, Lingbo ; Fosler-Lussier, Eric ; Sun, Huan</creatorcontrib><description>Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions, the evaluation of these approaches remains underdeveloped. Previous automatic metrics for counter narrative evaluation lack alignment with human judgment as they rely on superficial reference comparisons instead of incorporating key aspects of counter narrative quality as evaluation criteria. To address prior evaluation limitations, we propose a novel evaluation framework prompting LLMs to provide scores and feedback for generated counter narrative candidates using 5 defined aspects derived from guidelines from counter narrative specialized NGOs. We found that LLM evaluators achieve strong alignment to human-annotated scores and feedback and outperform alternative metrics, indicating their potential as multi-aspect, reference-free and interpretable evaluators for counter narrative evaluation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Feedback ; Large language models ; Narratives ; Natural language processing</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jones, Jaylen</creatorcontrib><creatorcontrib>Mo, Lingbo</creatorcontrib><creatorcontrib>Fosler-Lussier, Eric</creatorcontrib><creatorcontrib>Sun, Huan</creatorcontrib><title>A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models</title><title>arXiv.org</title><description>Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions, the evaluation of these approaches remains underdeveloped. Previous automatic metrics for counter narrative evaluation lack alignment with human judgment as they rely on superficial reference comparisons instead of incorporating key aspects of counter narrative quality as evaluation criteria. To address prior evaluation limitations, we propose a novel evaluation framework prompting LLMs to provide scores and feedback for generated counter narrative candidates using 5 defined aspects derived from guidelines from counter narrative specialized NGOs. We found that LLM evaluators achieve strong alignment to human-annotated scores and feedback and outperform alternative metrics, indicating their potential as multi-aspect, reference-free and interpretable evaluators for counter narrative evaluation.</description><subject>Alignment</subject><subject>Feedback</subject><subject>Large language models</subject><subject>Narratives</subject><subject>Natural language processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0OgjAURhsTE4nyDjdxJoFWfhwJgTiIk86k0ULA2uJti69vBx_A5Xwn-c6KBJSxJCoOlG5IaMwUxzHNcpqmLCC3Elon7RiVZhZ3Cw3yl_hofEKvESrtlBUIF47I7bgIqBcunVetwJlRDXDmOAhPNTjupdUPIc2OrHsujQh_uyX7pr5Wp2hG_XbC2G7SDpW_OnqkRZ4UGcvZf9UXi2NAjw</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>Jones, Jaylen</creator><creator>Mo, Lingbo</creator><creator>Fosler-Lussier, Eric</creator><creator>Sun, Huan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240329</creationdate><title>A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models</title><author>Jones, Jaylen ; Mo, Lingbo ; Fosler-Lussier, Eric ; Sun, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29287186373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Feedback</topic><topic>Large language models</topic><topic>Narratives</topic><topic>Natural language processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jones, Jaylen</creatorcontrib><creatorcontrib>Mo, Lingbo</creatorcontrib><creatorcontrib>Fosler-Lussier, Eric</creatorcontrib><creatorcontrib>Sun, Huan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Jaylen</au><au>Mo, Lingbo</au><au>Fosler-Lussier, Eric</au><au>Sun, Huan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-03-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions, the evaluation of these approaches remains underdeveloped. Previous automatic metrics for counter narrative evaluation lack alignment with human judgment as they rely on superficial reference comparisons instead of incorporating key aspects of counter narrative quality as evaluation criteria. To address prior evaluation limitations, we propose a novel evaluation framework prompting LLMs to provide scores and feedback for generated counter narrative candidates using 5 defined aspects derived from guidelines from counter narrative specialized NGOs. We found that LLM evaluators achieve strong alignment to human-annotated scores and feedback and outperform alternative metrics, indicating their potential as multi-aspect, reference-free and interpretable evaluators for counter narrative evaluation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2928718637 |
source | Free E- Journals |
subjects | Alignment Feedback Large language models Narratives Natural language processing |
title | A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Multi-Aspect%20Framework%20for%20Counter%20Narrative%20Evaluation%20using%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Jones,%20Jaylen&rft.date=2024-03-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2928718637%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928718637&rft_id=info:pmid/&rfr_iscdi=true |