A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models

Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Jones, Jaylen, Mo, Lingbo, Fosler-Lussier, Eric, Sun, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jones, Jaylen
Mo, Lingbo
Fosler-Lussier, Eric
Sun, Huan
description Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions, the evaluation of these approaches remains underdeveloped. Previous automatic metrics for counter narrative evaluation lack alignment with human judgment as they rely on superficial reference comparisons instead of incorporating key aspects of counter narrative quality as evaluation criteria. To address prior evaluation limitations, we propose a novel evaluation framework prompting LLMs to provide scores and feedback for generated counter narrative candidates using 5 defined aspects derived from guidelines from counter narrative specialized NGOs. We found that LLM evaluators achieve strong alignment to human-annotated scores and feedback and outperform alternative metrics, indicating their potential as multi-aspect, reference-free and interpretable evaluators for counter narrative evaluation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928718637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928718637</sourcerecordid><originalsourceid>FETCH-proquest_journals_29287186373</originalsourceid><addsrcrecordid>eNqNir0OgjAURhsTE4nyDjdxJoFWfhwJgTiIk86k0ULA2uJti69vBx_A5Xwn-c6KBJSxJCoOlG5IaMwUxzHNcpqmLCC3Elon7RiVZhZ3Cw3yl_hofEKvESrtlBUIF47I7bgIqBcunVetwJlRDXDmOAhPNTjupdUPIc2OrHsujQh_uyX7pr5Wp2hG_XbC2G7SDpW_OnqkRZ4UGcvZf9UXi2NAjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928718637</pqid></control><display><type>article</type><title>A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models</title><source>Free E- Journals</source><creator>Jones, Jaylen ; Mo, Lingbo ; Fosler-Lussier, Eric ; Sun, Huan</creator><creatorcontrib>Jones, Jaylen ; Mo, Lingbo ; Fosler-Lussier, Eric ; Sun, Huan</creatorcontrib><description>Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions, the evaluation of these approaches remains underdeveloped. Previous automatic metrics for counter narrative evaluation lack alignment with human judgment as they rely on superficial reference comparisons instead of incorporating key aspects of counter narrative quality as evaluation criteria. To address prior evaluation limitations, we propose a novel evaluation framework prompting LLMs to provide scores and feedback for generated counter narrative candidates using 5 defined aspects derived from guidelines from counter narrative specialized NGOs. We found that LLM evaluators achieve strong alignment to human-annotated scores and feedback and outperform alternative metrics, indicating their potential as multi-aspect, reference-free and interpretable evaluators for counter narrative evaluation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Feedback ; Large language models ; Narratives ; Natural language processing</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jones, Jaylen</creatorcontrib><creatorcontrib>Mo, Lingbo</creatorcontrib><creatorcontrib>Fosler-Lussier, Eric</creatorcontrib><creatorcontrib>Sun, Huan</creatorcontrib><title>A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models</title><title>arXiv.org</title><description>Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions, the evaluation of these approaches remains underdeveloped. Previous automatic metrics for counter narrative evaluation lack alignment with human judgment as they rely on superficial reference comparisons instead of incorporating key aspects of counter narrative quality as evaluation criteria. To address prior evaluation limitations, we propose a novel evaluation framework prompting LLMs to provide scores and feedback for generated counter narrative candidates using 5 defined aspects derived from guidelines from counter narrative specialized NGOs. We found that LLM evaluators achieve strong alignment to human-annotated scores and feedback and outperform alternative metrics, indicating their potential as multi-aspect, reference-free and interpretable evaluators for counter narrative evaluation.</description><subject>Alignment</subject><subject>Feedback</subject><subject>Large language models</subject><subject>Narratives</subject><subject>Natural language processing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNir0OgjAURhsTE4nyDjdxJoFWfhwJgTiIk86k0ULA2uJti69vBx_A5Xwn-c6KBJSxJCoOlG5IaMwUxzHNcpqmLCC3Elon7RiVZhZ3Cw3yl_hofEKvESrtlBUIF47I7bgIqBcunVetwJlRDXDmOAhPNTjupdUPIc2OrHsujQh_uyX7pr5Wp2hG_XbC2G7SDpW_OnqkRZ4UGcvZf9UXi2NAjw</recordid><startdate>20240329</startdate><enddate>20240329</enddate><creator>Jones, Jaylen</creator><creator>Mo, Lingbo</creator><creator>Fosler-Lussier, Eric</creator><creator>Sun, Huan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240329</creationdate><title>A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models</title><author>Jones, Jaylen ; Mo, Lingbo ; Fosler-Lussier, Eric ; Sun, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29287186373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Feedback</topic><topic>Large language models</topic><topic>Narratives</topic><topic>Natural language processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Jones, Jaylen</creatorcontrib><creatorcontrib>Mo, Lingbo</creatorcontrib><creatorcontrib>Fosler-Lussier, Eric</creatorcontrib><creatorcontrib>Sun, Huan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Jaylen</au><au>Mo, Lingbo</au><au>Fosler-Lussier, Eric</au><au>Sun, Huan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models</atitle><jtitle>arXiv.org</jtitle><date>2024-03-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Counter narratives - informed responses to hate speech contexts designed to refute hateful claims and de-escalate encounters - have emerged as an effective hate speech intervention strategy. While previous work has proposed automatic counter narrative generation methods to aid manual interventions, the evaluation of these approaches remains underdeveloped. Previous automatic metrics for counter narrative evaluation lack alignment with human judgment as they rely on superficial reference comparisons instead of incorporating key aspects of counter narrative quality as evaluation criteria. To address prior evaluation limitations, we propose a novel evaluation framework prompting LLMs to provide scores and feedback for generated counter narrative candidates using 5 defined aspects derived from guidelines from counter narrative specialized NGOs. We found that LLM evaluators achieve strong alignment to human-annotated scores and feedback and outperform alternative metrics, indicating their potential as multi-aspect, reference-free and interpretable evaluators for counter narrative evaluation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2928718637
source Free E- Journals
subjects Alignment
Feedback
Large language models
Narratives
Natural language processing
title A Multi-Aspect Framework for Counter Narrative Evaluation using Large Language Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Multi-Aspect%20Framework%20for%20Counter%20Narrative%20Evaluation%20using%20Large%20Language%20Models&rft.jtitle=arXiv.org&rft.au=Jones,%20Jaylen&rft.date=2024-03-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2928718637%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928718637&rft_id=info:pmid/&rfr_iscdi=true