One Prompt To Rule Them All: LLMs for Opinion Summary Evaluation

Evaluation of opinion summaries using conventional reference-based metrics rarely provides a holistic evaluation and has been shown to have a relatively low correlation with human judgments. Recent studies suggest using Large Language Models (LLMs) as reference-free metrics for NLG evaluation, howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Siledar, Tejpalsingh, Nath, Swaroop, Sankara Sri Raghava Ravindra Muddu, Rangaraju, Rupasai, Nath, Swaprava, Bhattacharyya, Pushpak, Banerjee, Suman, Patil, Amey, Sudhanshu Shekhar Singh, Muthusamy Chelliah, Garera, Nikesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Siledar, Tejpalsingh
Nath, Swaroop
Sankara Sri Raghava Ravindra Muddu
Rangaraju, Rupasai
Nath, Swaprava
Bhattacharyya, Pushpak
Banerjee, Suman
Patil, Amey
Sudhanshu Shekhar Singh
Muthusamy Chelliah
Garera, Nikesh
description Evaluation of opinion summaries using conventional reference-based metrics rarely provides a holistic evaluation and has been shown to have a relatively low correlation with human judgments. Recent studies suggest using Large Language Models (LLMs) as reference-free metrics for NLG evaluation, however, they remain unexplored for opinion summary evaluation. Moreover, limited opinion summary evaluation datasets inhibit progress. To address this, we release the SUMMEVAL-OP dataset covering 7 dimensions related to the evaluation of opinion summaries: fluency, coherence, relevance, faithfulness, aspect coverage, sentiment consistency, and specificity. We investigate Op-I-Prompt a dimension-independent prompt, and Op-Prompts, a dimension-dependent set of prompts for opinion summary evaluation. Experiments indicate that Op-I-Prompt emerges as a good alternative for evaluating opinion summaries achieving an average Spearman correlation of 0.70 with humans, outperforming all previous approaches. To the best of our knowledge, we are the first to investigate LLMs as evaluators on both closed-source and open-source models in the opinion summarization domain.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928716161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928716161</sourcerecordid><originalsourceid>FETCH-proquest_journals_29287161613</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8M9LVQgoys8tKFEIyVcIKs1JVQjJSM1VcMzJsVLw8fEtVkjLL1LwL8jMy8zPUwguzc1NLKpUcC1LzClNLAEK8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGlkYW5oRkQGhOnCgB8vje8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928716161</pqid></control><display><type>article</type><title>One Prompt To Rule Them All: LLMs for Opinion Summary Evaluation</title><source>Freely Accessible Journals</source><creator>Siledar, Tejpalsingh ; Nath, Swaroop ; Sankara Sri Raghava Ravindra Muddu ; Rangaraju, Rupasai ; Nath, Swaprava ; Bhattacharyya, Pushpak ; Banerjee, Suman ; Patil, Amey ; Sudhanshu Shekhar Singh ; Muthusamy Chelliah ; Garera, Nikesh</creator><creatorcontrib>Siledar, Tejpalsingh ; Nath, Swaroop ; Sankara Sri Raghava Ravindra Muddu ; Rangaraju, Rupasai ; Nath, Swaprava ; Bhattacharyya, Pushpak ; Banerjee, Suman ; Patil, Amey ; Sudhanshu Shekhar Singh ; Muthusamy Chelliah ; Garera, Nikesh</creatorcontrib><description>Evaluation of opinion summaries using conventional reference-based metrics rarely provides a holistic evaluation and has been shown to have a relatively low correlation with human judgments. Recent studies suggest using Large Language Models (LLMs) as reference-free metrics for NLG evaluation, however, they remain unexplored for opinion summary evaluation. Moreover, limited opinion summary evaluation datasets inhibit progress. To address this, we release the SUMMEVAL-OP dataset covering 7 dimensions related to the evaluation of opinion summaries: fluency, coherence, relevance, faithfulness, aspect coverage, sentiment consistency, and specificity. We investigate Op-I-Prompt a dimension-independent prompt, and Op-Prompts, a dimension-dependent set of prompts for opinion summary evaluation. Experiments indicate that Op-I-Prompt emerges as a good alternative for evaluating opinion summaries achieving an average Spearman correlation of 0.70 with humans, outperforming all previous approaches. To the best of our knowledge, we are the first to investigate LLMs as evaluators on both closed-source and open-source models in the opinion summarization domain.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Large language models ; Summaries</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Siledar, Tejpalsingh</creatorcontrib><creatorcontrib>Nath, Swaroop</creatorcontrib><creatorcontrib>Sankara Sri Raghava Ravindra Muddu</creatorcontrib><creatorcontrib>Rangaraju, Rupasai</creatorcontrib><creatorcontrib>Nath, Swaprava</creatorcontrib><creatorcontrib>Bhattacharyya, Pushpak</creatorcontrib><creatorcontrib>Banerjee, Suman</creatorcontrib><creatorcontrib>Patil, Amey</creatorcontrib><creatorcontrib>Sudhanshu Shekhar Singh</creatorcontrib><creatorcontrib>Muthusamy Chelliah</creatorcontrib><creatorcontrib>Garera, Nikesh</creatorcontrib><title>One Prompt To Rule Them All: LLMs for Opinion Summary Evaluation</title><title>arXiv.org</title><description>Evaluation of opinion summaries using conventional reference-based metrics rarely provides a holistic evaluation and has been shown to have a relatively low correlation with human judgments. Recent studies suggest using Large Language Models (LLMs) as reference-free metrics for NLG evaluation, however, they remain unexplored for opinion summary evaluation. Moreover, limited opinion summary evaluation datasets inhibit progress. To address this, we release the SUMMEVAL-OP dataset covering 7 dimensions related to the evaluation of opinion summaries: fluency, coherence, relevance, faithfulness, aspect coverage, sentiment consistency, and specificity. We investigate Op-I-Prompt a dimension-independent prompt, and Op-Prompts, a dimension-dependent set of prompts for opinion summary evaluation. Experiments indicate that Op-I-Prompt emerges as a good alternative for evaluating opinion summaries achieving an average Spearman correlation of 0.70 with humans, outperforming all previous approaches. To the best of our knowledge, we are the first to investigate LLMs as evaluators on both closed-source and open-source models in the opinion summarization domain.</description><subject>Datasets</subject><subject>Large language models</subject><subject>Summaries</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw8M9LVQgoys8tKFEIyVcIKs1JVQjJSM1VcMzJsVLw8fEtVkjLL1LwL8jMy8zPUwguzc1NLKpUcC1LzClNLAEK8TCwpiXmFKfyQmluBmU31xBnD92CovzC0tTikvis_NKiPKBUvJGlkYW5oRkQGhOnCgB8vje8</recordid><startdate>20240609</startdate><enddate>20240609</enddate><creator>Siledar, Tejpalsingh</creator><creator>Nath, Swaroop</creator><creator>Sankara Sri Raghava Ravindra Muddu</creator><creator>Rangaraju, Rupasai</creator><creator>Nath, Swaprava</creator><creator>Bhattacharyya, Pushpak</creator><creator>Banerjee, Suman</creator><creator>Patil, Amey</creator><creator>Sudhanshu Shekhar Singh</creator><creator>Muthusamy Chelliah</creator><creator>Garera, Nikesh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240609</creationdate><title>One Prompt To Rule Them All: LLMs for Opinion Summary Evaluation</title><author>Siledar, Tejpalsingh ; Nath, Swaroop ; Sankara Sri Raghava Ravindra Muddu ; Rangaraju, Rupasai ; Nath, Swaprava ; Bhattacharyya, Pushpak ; Banerjee, Suman ; Patil, Amey ; Sudhanshu Shekhar Singh ; Muthusamy Chelliah ; Garera, Nikesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29287161613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Large language models</topic><topic>Summaries</topic><toplevel>online_resources</toplevel><creatorcontrib>Siledar, Tejpalsingh</creatorcontrib><creatorcontrib>Nath, Swaroop</creatorcontrib><creatorcontrib>Sankara Sri Raghava Ravindra Muddu</creatorcontrib><creatorcontrib>Rangaraju, Rupasai</creatorcontrib><creatorcontrib>Nath, Swaprava</creatorcontrib><creatorcontrib>Bhattacharyya, Pushpak</creatorcontrib><creatorcontrib>Banerjee, Suman</creatorcontrib><creatorcontrib>Patil, Amey</creatorcontrib><creatorcontrib>Sudhanshu Shekhar Singh</creatorcontrib><creatorcontrib>Muthusamy Chelliah</creatorcontrib><creatorcontrib>Garera, Nikesh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siledar, Tejpalsingh</au><au>Nath, Swaroop</au><au>Sankara Sri Raghava Ravindra Muddu</au><au>Rangaraju, Rupasai</au><au>Nath, Swaprava</au><au>Bhattacharyya, Pushpak</au><au>Banerjee, Suman</au><au>Patil, Amey</au><au>Sudhanshu Shekhar Singh</au><au>Muthusamy Chelliah</au><au>Garera, Nikesh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>One Prompt To Rule Them All: LLMs for Opinion Summary Evaluation</atitle><jtitle>arXiv.org</jtitle><date>2024-06-09</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Evaluation of opinion summaries using conventional reference-based metrics rarely provides a holistic evaluation and has been shown to have a relatively low correlation with human judgments. Recent studies suggest using Large Language Models (LLMs) as reference-free metrics for NLG evaluation, however, they remain unexplored for opinion summary evaluation. Moreover, limited opinion summary evaluation datasets inhibit progress. To address this, we release the SUMMEVAL-OP dataset covering 7 dimensions related to the evaluation of opinion summaries: fluency, coherence, relevance, faithfulness, aspect coverage, sentiment consistency, and specificity. We investigate Op-I-Prompt a dimension-independent prompt, and Op-Prompts, a dimension-dependent set of prompts for opinion summary evaluation. Experiments indicate that Op-I-Prompt emerges as a good alternative for evaluating opinion summaries achieving an average Spearman correlation of 0.70 with humans, outperforming all previous approaches. To the best of our knowledge, we are the first to investigate LLMs as evaluators on both closed-source and open-source models in the opinion summarization domain.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2928716161
source Freely Accessible Journals
subjects Datasets
Large language models
Summaries
title One Prompt To Rule Them All: LLMs for Opinion Summary Evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=One%20Prompt%20To%20Rule%20Them%20All:%20LLMs%20for%20Opinion%20Summary%20Evaluation&rft.jtitle=arXiv.org&rft.au=Siledar,%20Tejpalsingh&rft.date=2024-06-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2928716161%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928716161&rft_id=info:pmid/&rfr_iscdi=true