Construction of Linear Codes from the Unit Graph \(G(\mathbb{Z}_{n}\oplus \mathbb{Z}_{m})\)
In this paper, we develop the python code for generating unit graph \(G(\mathbb{Z}_{n}\oplus\mathbb{Z}_{m})\), for any integers \(m\ \& \ n\). For any prime \(r\), we construct \(r\)-ary linear codes from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n}\oplus\mathbb{Z}_{m})\), where \(n...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we develop the python code for generating unit graph \(G(\mathbb{Z}_{n}\oplus\mathbb{Z}_{m})\), for any integers \(m\ \& \ n\). For any prime \(r\), we construct \(r\)-ary linear codes from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n}\oplus\mathbb{Z}_{m})\), where \(n \ \& \ m\) are either power of prime or product of power of primes. We also prove the minimum distance of dual of the constructed codes as either 3 or 4. Finally, we state conjectures two on linear codes constructed from the unit graph \(G(\mathbb{Z}_{n}\oplus \mathbb{Z}_{m})\), for any integer \(m\ \& \ n\). |
---|---|
ISSN: | 2331-8422 |