Construction of Linear Codes from the Unit Graph \(G(\mathbb{Z}_{n}\oplus \mathbb{Z}_{m})\)

In this paper, we develop the python code for generating unit graph \(G(\mathbb{Z}_{n}\oplus\mathbb{Z}_{m})\), for any integers \(m\ \& \ n\). For any prime \(r\), we construct \(r\)-ary linear codes from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n}\oplus\mathbb{Z}_{m})\), where \(n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Shaikh, Wajid M, Jain, Rupali S, B Surendranath Reddy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop the python code for generating unit graph \(G(\mathbb{Z}_{n}\oplus\mathbb{Z}_{m})\), for any integers \(m\ \& \ n\). For any prime \(r\), we construct \(r\)-ary linear codes from the incidence matrix of the unit graph \(G(\mathbb{Z}_{n}\oplus\mathbb{Z}_{m})\), where \(n \ \& \ m\) are either power of prime or product of power of primes. We also prove the minimum distance of dual of the constructed codes as either 3 or 4. Finally, we state conjectures two on linear codes constructed from the unit graph \(G(\mathbb{Z}_{n}\oplus \mathbb{Z}_{m})\), for any integer \(m\ \& \ n\).
ISSN:2331-8422