Joule heating due to vertical ion currents in the lower thermosphere over the dip equator
The theory of equatorial electrojet predicts the presence of vertical ion currents (Pedersen currents) as a part of the electrojet current system. The vertical ion current density profile over the dip equator, that forms a part of the meridional current system is derived from an electrojet model. Th...
Gespeichert in:
Veröffentlicht in: | Earth, planets, and space planets, and space, 1998-01, Vol.50 (10), p.833-837 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 837 |
---|---|
container_issue | 10 |
container_start_page | 833 |
container_title | Earth, planets, and space |
container_volume | 50 |
creator | RAGHAVARAO, R SRIDHARAN, R SUHASINI, R |
description | The theory of equatorial electrojet predicts the presence of vertical ion currents (Pedersen currents) as a part of the electrojet current system. The vertical ion current density profile over the dip equator, that forms a part of the meridional current system is derived from an electrojet model. The joule heating due to these currents flowing upward during daytime for a local time for 1100 hrs has been estimated. The primary east-west current density of the model is kept at the same value as that measured by means of rocket-borne magnetometer on one occasion. The electrical power dissipated as heat in the narrow belt in the height region of 100–180 km is estimated and found to be significant. The height of maximum power dissipation coincides with the altitude of maximum ion velocity i.e. 122 km. By solving the heat conduction equation we obtain a maximum temperature increase of 8°K around 135 km. The importance of this localized heating in the lower thermosphere around ±2° of the dip equator is discussed. |
doi_str_mv | 10.1186/bf03352176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928457049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928457049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-8d2ffce0e22e72bddc1f2ddc1c50e9fa62b070826e2dd853b99916aa0b1c926d3</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEqVw4RdYghNSwI_EsY9QUR6qxAUOnCLHWdNUaZzaThH_Hlct4rIzGn27Kw1Cl5TcUirFXW0J5wWjpThCEyolyQol6XHyPOeZlJydorMQVoRwkgs-QZ-vbuwAL0HHtv_CzQg4OrwFH1ujO9y6HpvRe-hjwG2P4xJw577B75xfuzAkAey2-wQ37YBhM-ro_Dk6sboLcHHQKfqYP77PnrPF29PL7H6RmYLmMZMNs9YAAcagZHXTGGrZbpqCgLJasJqURDIBKZUFr5VSVGhNamoUEw2foqv93cG7zQghVis3-j69rJhiMi9KkqtE3ewp410IHmw1-Hat_U9FSbWrrnqY_1WX4OvDSR1SC9br3rThf0OUCcr5L1jZblY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928457049</pqid></control><display><type>article</type><title>Joule heating due to vertical ion currents in the lower thermosphere over the dip equator</title><source>J-STAGE Free</source><source>SpringerLink Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>RAGHAVARAO, R ; SRIDHARAN, R ; SUHASINI, R</creator><creatorcontrib>RAGHAVARAO, R ; SRIDHARAN, R ; SUHASINI, R</creatorcontrib><description>The theory of equatorial electrojet predicts the presence of vertical ion currents (Pedersen currents) as a part of the electrojet current system. The vertical ion current density profile over the dip equator, that forms a part of the meridional current system is derived from an electrojet model. The joule heating due to these currents flowing upward during daytime for a local time for 1100 hrs has been estimated. The primary east-west current density of the model is kept at the same value as that measured by means of rocket-borne magnetometer on one occasion. The electrical power dissipated as heat in the narrow belt in the height region of 100–180 km is estimated and found to be significant. The height of maximum power dissipation coincides with the altitude of maximum ion velocity i.e. 122 km. By solving the heat conduction equation we obtain a maximum temperature increase of 8°K around 135 km. The importance of this localized heating in the lower thermosphere around ±2° of the dip equator is discussed.</description><identifier>ISSN: 1343-8832</identifier><identifier>ISSN: 1880-5981</identifier><identifier>EISSN: 1880-5981</identifier><identifier>DOI: 10.1186/bf03352176</identifier><language>eng</language><publisher>Tokyo: Terra</publisher><subject>Conduction heating ; Conductive heat transfer ; Earth, ocean, space ; Electric power ; Electrojets ; Energy dissipation ; Equatorial electrojet ; Exact sciences and technology ; External geophysics ; General properties of the high atmosphere ; Heating ; Ion current density ; Ion currents ; Ion velocity ; Ions ; Joule heating ; Lower thermosphere ; Maximum power ; Maximum temperatures ; Ohmic dissipation ; Physics of the high neutral atmosphere ; Resistance heating ; Temperature rise ; Thermosphere</subject><ispartof>Earth, planets, and space, 1998-01, Vol.50 (10), p.833-837</ispartof><rights>1999 INIST-CNRS</rights><rights>The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences. 1998.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-8d2ffce0e22e72bddc1f2ddc1c50e9fa62b070826e2dd853b99916aa0b1c926d3</citedby><cites>FETCH-LOGICAL-c514t-8d2ffce0e22e72bddc1f2ddc1c50e9fa62b070826e2dd853b99916aa0b1c926d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27906,27907</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1677634$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>RAGHAVARAO, R</creatorcontrib><creatorcontrib>SRIDHARAN, R</creatorcontrib><creatorcontrib>SUHASINI, R</creatorcontrib><title>Joule heating due to vertical ion currents in the lower thermosphere over the dip equator</title><title>Earth, planets, and space</title><description>The theory of equatorial electrojet predicts the presence of vertical ion currents (Pedersen currents) as a part of the electrojet current system. The vertical ion current density profile over the dip equator, that forms a part of the meridional current system is derived from an electrojet model. The joule heating due to these currents flowing upward during daytime for a local time for 1100 hrs has been estimated. The primary east-west current density of the model is kept at the same value as that measured by means of rocket-borne magnetometer on one occasion. The electrical power dissipated as heat in the narrow belt in the height region of 100–180 km is estimated and found to be significant. The height of maximum power dissipation coincides with the altitude of maximum ion velocity i.e. 122 km. By solving the heat conduction equation we obtain a maximum temperature increase of 8°K around 135 km. The importance of this localized heating in the lower thermosphere around ±2° of the dip equator is discussed.</description><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Earth, ocean, space</subject><subject>Electric power</subject><subject>Electrojets</subject><subject>Energy dissipation</subject><subject>Equatorial electrojet</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>General properties of the high atmosphere</subject><subject>Heating</subject><subject>Ion current density</subject><subject>Ion currents</subject><subject>Ion velocity</subject><subject>Ions</subject><subject>Joule heating</subject><subject>Lower thermosphere</subject><subject>Maximum power</subject><subject>Maximum temperatures</subject><subject>Ohmic dissipation</subject><subject>Physics of the high neutral atmosphere</subject><subject>Resistance heating</subject><subject>Temperature rise</subject><subject>Thermosphere</subject><issn>1343-8832</issn><issn>1880-5981</issn><issn>1880-5981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpFkEtPwzAQhC0EEqVw4RdYghNSwI_EsY9QUR6qxAUOnCLHWdNUaZzaThH_Hlct4rIzGn27Kw1Cl5TcUirFXW0J5wWjpThCEyolyQol6XHyPOeZlJydorMQVoRwkgs-QZ-vbuwAL0HHtv_CzQg4OrwFH1ujO9y6HpvRe-hjwG2P4xJw577B75xfuzAkAey2-wQ37YBhM-ro_Dk6sboLcHHQKfqYP77PnrPF29PL7H6RmYLmMZMNs9YAAcagZHXTGGrZbpqCgLJasJqURDIBKZUFr5VSVGhNamoUEw2foqv93cG7zQghVis3-j69rJhiMi9KkqtE3ewp410IHmw1-Hat_U9FSbWrrnqY_1WX4OvDSR1SC9br3rThf0OUCcr5L1jZblY</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>RAGHAVARAO, R</creator><creator>SRIDHARAN, R</creator><creator>SUHASINI, R</creator><general>Terra</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>19980101</creationdate><title>Joule heating due to vertical ion currents in the lower thermosphere over the dip equator</title><author>RAGHAVARAO, R ; SRIDHARAN, R ; SUHASINI, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-8d2ffce0e22e72bddc1f2ddc1c50e9fa62b070826e2dd853b99916aa0b1c926d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Earth, ocean, space</topic><topic>Electric power</topic><topic>Electrojets</topic><topic>Energy dissipation</topic><topic>Equatorial electrojet</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>General properties of the high atmosphere</topic><topic>Heating</topic><topic>Ion current density</topic><topic>Ion currents</topic><topic>Ion velocity</topic><topic>Ions</topic><topic>Joule heating</topic><topic>Lower thermosphere</topic><topic>Maximum power</topic><topic>Maximum temperatures</topic><topic>Ohmic dissipation</topic><topic>Physics of the high neutral atmosphere</topic><topic>Resistance heating</topic><topic>Temperature rise</topic><topic>Thermosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>RAGHAVARAO, R</creatorcontrib><creatorcontrib>SRIDHARAN, R</creatorcontrib><creatorcontrib>SUHASINI, R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Earth, planets, and space</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>RAGHAVARAO, R</au><au>SRIDHARAN, R</au><au>SUHASINI, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joule heating due to vertical ion currents in the lower thermosphere over the dip equator</atitle><jtitle>Earth, planets, and space</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>50</volume><issue>10</issue><spage>833</spage><epage>837</epage><pages>833-837</pages><issn>1343-8832</issn><issn>1880-5981</issn><eissn>1880-5981</eissn><abstract>The theory of equatorial electrojet predicts the presence of vertical ion currents (Pedersen currents) as a part of the electrojet current system. The vertical ion current density profile over the dip equator, that forms a part of the meridional current system is derived from an electrojet model. The joule heating due to these currents flowing upward during daytime for a local time for 1100 hrs has been estimated. The primary east-west current density of the model is kept at the same value as that measured by means of rocket-borne magnetometer on one occasion. The electrical power dissipated as heat in the narrow belt in the height region of 100–180 km is estimated and found to be significant. The height of maximum power dissipation coincides with the altitude of maximum ion velocity i.e. 122 km. By solving the heat conduction equation we obtain a maximum temperature increase of 8°K around 135 km. The importance of this localized heating in the lower thermosphere around ±2° of the dip equator is discussed.</abstract><cop>Tokyo</cop><pub>Terra</pub><doi>10.1186/bf03352176</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1343-8832 |
ispartof | Earth, planets, and space, 1998-01, Vol.50 (10), p.833-837 |
issn | 1343-8832 1880-5981 1880-5981 |
language | eng |
recordid | cdi_proquest_journals_2928457049 |
source | J-STAGE Free; SpringerLink Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Conduction heating Conductive heat transfer Earth, ocean, space Electric power Electrojets Energy dissipation Equatorial electrojet Exact sciences and technology External geophysics General properties of the high atmosphere Heating Ion current density Ion currents Ion velocity Ions Joule heating Lower thermosphere Maximum power Maximum temperatures Ohmic dissipation Physics of the high neutral atmosphere Resistance heating Temperature rise Thermosphere |
title | Joule heating due to vertical ion currents in the lower thermosphere over the dip equator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joule%20heating%20due%20to%20vertical%20ion%20currents%20in%20the%20lower%20thermosphere%20over%20the%20dip%20equator&rft.jtitle=Earth,%20planets,%20and%20space&rft.au=RAGHAVARAO,%20R&rft.date=1998-01-01&rft.volume=50&rft.issue=10&rft.spage=833&rft.epage=837&rft.pages=833-837&rft.issn=1343-8832&rft.eissn=1880-5981&rft_id=info:doi/10.1186/bf03352176&rft_dat=%3Cproquest_cross%3E2928457049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928457049&rft_id=info:pmid/&rfr_iscdi=true |