Towards Tight Convex Relaxations for Contact-Rich Manipulation

We present a novel method for global motion planning of robotic systems that interact with the environment through contacts. Our method directly handles the hybrid nature of such tasks using tools from convex optimization. We formulate the motion-planning problem as a shortest-path problem in a grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Bernhard Paus Graesdal, Shao Yuan Chew Chia, Marcucci, Tobia, Morozov, Savva, Amice, Alexandre, Parrilo, Pablo A, Tedrake, Russ
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bernhard Paus Graesdal
Shao Yuan Chew Chia
Marcucci, Tobia
Morozov, Savva
Amice, Alexandre
Parrilo, Pablo A
Tedrake, Russ
description We present a novel method for global motion planning of robotic systems that interact with the environment through contacts. Our method directly handles the hybrid nature of such tasks using tools from convex optimization. We formulate the motion-planning problem as a shortest-path problem in a graph of convex sets, where a path in the graph corresponds to a contact sequence and a convex set models the quasi-static dynamics within a fixed contact mode. For each contact mode, we use semidefinite programming to relax the nonconvex dynamics that results from the simultaneous optimization of the object's pose, contact locations, and contact forces. The result is a tight convex relaxation of the overall planning problem, that can be efficiently solved and quickly rounded to find a feasible contact-rich trajectory. As an initial application for evaluating our method, we apply it on the task of planar pushing. Exhaustive experiments show that our convex-optimization method generates plans that are consistently within a small percentage of the global optimum, without relying on an initial guess, and that our method succeeds in finding trajectories where a state-of-the-art baseline for contact-rich planning usually fails. We demonstrate the quality of these plans on a real robotic system.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928440315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928440315</sourcerecordid><originalsourceid>FETCH-proquest_journals_29284403153</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwC8kvTyxKKVYIyUzPKFFwzs8rS61QCErNSaxILMnMzytWSMsvAgmXJCaX6AZlJmco-CbmZRaU5oCleRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjSyMLExMDY0NSYOFUAw_c4Zw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928440315</pqid></control><display><type>article</type><title>Towards Tight Convex Relaxations for Contact-Rich Manipulation</title><source>Free E- Journals</source><creator>Bernhard Paus Graesdal ; Shao Yuan Chew Chia ; Marcucci, Tobia ; Morozov, Savva ; Amice, Alexandre ; Parrilo, Pablo A ; Tedrake, Russ</creator><creatorcontrib>Bernhard Paus Graesdal ; Shao Yuan Chew Chia ; Marcucci, Tobia ; Morozov, Savva ; Amice, Alexandre ; Parrilo, Pablo A ; Tedrake, Russ</creatorcontrib><description>We present a novel method for global motion planning of robotic systems that interact with the environment through contacts. Our method directly handles the hybrid nature of such tasks using tools from convex optimization. We formulate the motion-planning problem as a shortest-path problem in a graph of convex sets, where a path in the graph corresponds to a contact sequence and a convex set models the quasi-static dynamics within a fixed contact mode. For each contact mode, we use semidefinite programming to relax the nonconvex dynamics that results from the simultaneous optimization of the object's pose, contact locations, and contact forces. The result is a tight convex relaxation of the overall planning problem, that can be efficiently solved and quickly rounded to find a feasible contact-rich trajectory. As an initial application for evaluating our method, we apply it on the task of planar pushing. Exhaustive experiments show that our convex-optimization method generates plans that are consistently within a small percentage of the global optimum, without relying on an initial guess, and that our method succeeds in finding trajectories where a state-of-the-art baseline for contact-rich planning usually fails. We demonstrate the quality of these plans on a real robotic system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Contact force ; Convexity ; Motion planning ; Optimization ; Planning ; Semidefinite programming ; Shortest-path problems</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bernhard Paus Graesdal</creatorcontrib><creatorcontrib>Shao Yuan Chew Chia</creatorcontrib><creatorcontrib>Marcucci, Tobia</creatorcontrib><creatorcontrib>Morozov, Savva</creatorcontrib><creatorcontrib>Amice, Alexandre</creatorcontrib><creatorcontrib>Parrilo, Pablo A</creatorcontrib><creatorcontrib>Tedrake, Russ</creatorcontrib><title>Towards Tight Convex Relaxations for Contact-Rich Manipulation</title><title>arXiv.org</title><description>We present a novel method for global motion planning of robotic systems that interact with the environment through contacts. Our method directly handles the hybrid nature of such tasks using tools from convex optimization. We formulate the motion-planning problem as a shortest-path problem in a graph of convex sets, where a path in the graph corresponds to a contact sequence and a convex set models the quasi-static dynamics within a fixed contact mode. For each contact mode, we use semidefinite programming to relax the nonconvex dynamics that results from the simultaneous optimization of the object's pose, contact locations, and contact forces. The result is a tight convex relaxation of the overall planning problem, that can be efficiently solved and quickly rounded to find a feasible contact-rich trajectory. As an initial application for evaluating our method, we apply it on the task of planar pushing. Exhaustive experiments show that our convex-optimization method generates plans that are consistently within a small percentage of the global optimum, without relying on an initial guess, and that our method succeeds in finding trajectories where a state-of-the-art baseline for contact-rich planning usually fails. We demonstrate the quality of these plans on a real robotic system.</description><subject>Contact force</subject><subject>Convexity</subject><subject>Motion planning</subject><subject>Optimization</subject><subject>Planning</subject><subject>Semidefinite programming</subject><subject>Shortest-path problems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwC8kvTyxKKVYIyUzPKFFwzs8rS61QCErNSaxILMnMzytWSMsvAgmXJCaX6AZlJmco-CbmZRaU5oCleRhY0xJzilN5oTQ3g7Kba4izh25BUX5haWpxSXxWfmlRHlAq3sjSyMLExMDY0NSYOFUAw_c4Zw</recordid><startdate>20240705</startdate><enddate>20240705</enddate><creator>Bernhard Paus Graesdal</creator><creator>Shao Yuan Chew Chia</creator><creator>Marcucci, Tobia</creator><creator>Morozov, Savva</creator><creator>Amice, Alexandre</creator><creator>Parrilo, Pablo A</creator><creator>Tedrake, Russ</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240705</creationdate><title>Towards Tight Convex Relaxations for Contact-Rich Manipulation</title><author>Bernhard Paus Graesdal ; Shao Yuan Chew Chia ; Marcucci, Tobia ; Morozov, Savva ; Amice, Alexandre ; Parrilo, Pablo A ; Tedrake, Russ</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29284403153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Contact force</topic><topic>Convexity</topic><topic>Motion planning</topic><topic>Optimization</topic><topic>Planning</topic><topic>Semidefinite programming</topic><topic>Shortest-path problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Bernhard Paus Graesdal</creatorcontrib><creatorcontrib>Shao Yuan Chew Chia</creatorcontrib><creatorcontrib>Marcucci, Tobia</creatorcontrib><creatorcontrib>Morozov, Savva</creatorcontrib><creatorcontrib>Amice, Alexandre</creatorcontrib><creatorcontrib>Parrilo, Pablo A</creatorcontrib><creatorcontrib>Tedrake, Russ</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bernhard Paus Graesdal</au><au>Shao Yuan Chew Chia</au><au>Marcucci, Tobia</au><au>Morozov, Savva</au><au>Amice, Alexandre</au><au>Parrilo, Pablo A</au><au>Tedrake, Russ</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Tight Convex Relaxations for Contact-Rich Manipulation</atitle><jtitle>arXiv.org</jtitle><date>2024-07-05</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a novel method for global motion planning of robotic systems that interact with the environment through contacts. Our method directly handles the hybrid nature of such tasks using tools from convex optimization. We formulate the motion-planning problem as a shortest-path problem in a graph of convex sets, where a path in the graph corresponds to a contact sequence and a convex set models the quasi-static dynamics within a fixed contact mode. For each contact mode, we use semidefinite programming to relax the nonconvex dynamics that results from the simultaneous optimization of the object's pose, contact locations, and contact forces. The result is a tight convex relaxation of the overall planning problem, that can be efficiently solved and quickly rounded to find a feasible contact-rich trajectory. As an initial application for evaluating our method, we apply it on the task of planar pushing. Exhaustive experiments show that our convex-optimization method generates plans that are consistently within a small percentage of the global optimum, without relying on an initial guess, and that our method succeeds in finding trajectories where a state-of-the-art baseline for contact-rich planning usually fails. We demonstrate the quality of these plans on a real robotic system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2928440315
source Free E- Journals
subjects Contact force
Convexity
Motion planning
Optimization
Planning
Semidefinite programming
Shortest-path problems
title Towards Tight Convex Relaxations for Contact-Rich Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A37%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Tight%20Convex%20Relaxations%20for%20Contact-Rich%20Manipulation&rft.jtitle=arXiv.org&rft.au=Bernhard%20Paus%20Graesdal&rft.date=2024-07-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2928440315%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928440315&rft_id=info:pmid/&rfr_iscdi=true