Integer Optimization of CT Trajectories using a Discrete Data Completeness Formulation

X-ray computed tomography (CT) plays a key role in digitizing three-dimensional structures for a wide range of medical and industrial applications. Traditional CT systems often rely on standard circular and helical scan trajectories, which may not be optimal for challenging scenarios involving large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Schneider, Linda-Sophie, Herl, Gabriel, Maier, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Schneider, Linda-Sophie
Herl, Gabriel
Maier, Andreas
description X-ray computed tomography (CT) plays a key role in digitizing three-dimensional structures for a wide range of medical and industrial applications. Traditional CT systems often rely on standard circular and helical scan trajectories, which may not be optimal for challenging scenarios involving large objects, complex structures, or resource constraints. In response to these challenges, we are exploring the potential of twin robotic CT systems, which offer the flexibility to acquire projections from arbitrary views around the object of interest. Ensuring complete and mathematically sound reconstructions becomes critical in such systems. In this work, we present an integer programming-based CT trajectory optimization method. Utilizing discrete data completeness conditions, we formulate an optimization problem to select an optimized set of projections. This approach enforces data completeness and considers absorption-based metrics for reliability evaluation. We compare our method with an equidistant circular CT trajectory and a greedy approach. While greedy already performs well in some cases, we provide a way to improve greedy-based projection selection using an integer optimization approach. Our approach improves CT trajectories and quantifies the optimality of the solution in terms of an optimality gap.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2928440136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928440136</sourcerecordid><originalsourceid>FETCH-proquest_journals_29284401363</originalsourceid><addsrcrecordid>eNqNjMEKgkAURYcgSMp_eNBaGGfUbK1JrdpI2xjkKSM6Y_NmNn19En1Aq8vhHO6GRULKNCkzIXYsJho556I4iTyXEXvcjMcBHdwXr2f9Vl5bA7aHqoXWqRE7b51GgkDaDKCg1tQ59Ai18goqOy_TSgaJoLFuDtP34cC2vZoI49_u2bG5tNU1WZx9BST_HG1wZlVPcRZllvFUFvK_6gMSaUFP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928440136</pqid></control><display><type>article</type><title>Integer Optimization of CT Trajectories using a Discrete Data Completeness Formulation</title><source>Free E- Journals</source><creator>Schneider, Linda-Sophie ; Herl, Gabriel ; Maier, Andreas</creator><creatorcontrib>Schneider, Linda-Sophie ; Herl, Gabriel ; Maier, Andreas</creatorcontrib><description>X-ray computed tomography (CT) plays a key role in digitizing three-dimensional structures for a wide range of medical and industrial applications. Traditional CT systems often rely on standard circular and helical scan trajectories, which may not be optimal for challenging scenarios involving large objects, complex structures, or resource constraints. In response to these challenges, we are exploring the potential of twin robotic CT systems, which offer the flexibility to acquire projections from arbitrary views around the object of interest. Ensuring complete and mathematically sound reconstructions becomes critical in such systems. In this work, we present an integer programming-based CT trajectory optimization method. Utilizing discrete data completeness conditions, we formulate an optimization problem to select an optimized set of projections. This approach enforces data completeness and considers absorption-based metrics for reliability evaluation. We compare our method with an equidistant circular CT trajectory and a greedy approach. While greedy already performs well in some cases, we provide a way to improve greedy-based projection selection using an integer optimization approach. Our approach improves CT trajectories and quantifies the optimality of the solution in terms of an optimality gap.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Completeness ; Computed tomography ; Industrial applications ; Integer programming ; Optimization ; Reliability analysis ; Trajectory optimization</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Schneider, Linda-Sophie</creatorcontrib><creatorcontrib>Herl, Gabriel</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><title>Integer Optimization of CT Trajectories using a Discrete Data Completeness Formulation</title><title>arXiv.org</title><description>X-ray computed tomography (CT) plays a key role in digitizing three-dimensional structures for a wide range of medical and industrial applications. Traditional CT systems often rely on standard circular and helical scan trajectories, which may not be optimal for challenging scenarios involving large objects, complex structures, or resource constraints. In response to these challenges, we are exploring the potential of twin robotic CT systems, which offer the flexibility to acquire projections from arbitrary views around the object of interest. Ensuring complete and mathematically sound reconstructions becomes critical in such systems. In this work, we present an integer programming-based CT trajectory optimization method. Utilizing discrete data completeness conditions, we formulate an optimization problem to select an optimized set of projections. This approach enforces data completeness and considers absorption-based metrics for reliability evaluation. We compare our method with an equidistant circular CT trajectory and a greedy approach. While greedy already performs well in some cases, we provide a way to improve greedy-based projection selection using an integer optimization approach. Our approach improves CT trajectories and quantifies the optimality of the solution in terms of an optimality gap.</description><subject>Completeness</subject><subject>Computed tomography</subject><subject>Industrial applications</subject><subject>Integer programming</subject><subject>Optimization</subject><subject>Reliability analysis</subject><subject>Trajectory optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMEKgkAURYcgSMp_eNBaGGfUbK1JrdpI2xjkKSM6Y_NmNn19En1Aq8vhHO6GRULKNCkzIXYsJho556I4iTyXEXvcjMcBHdwXr2f9Vl5bA7aHqoXWqRE7b51GgkDaDKCg1tQ59Ai18goqOy_TSgaJoLFuDtP34cC2vZoI49_u2bG5tNU1WZx9BST_HG1wZlVPcRZllvFUFvK_6gMSaUFP</recordid><startdate>20240129</startdate><enddate>20240129</enddate><creator>Schneider, Linda-Sophie</creator><creator>Herl, Gabriel</creator><creator>Maier, Andreas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240129</creationdate><title>Integer Optimization of CT Trajectories using a Discrete Data Completeness Formulation</title><author>Schneider, Linda-Sophie ; Herl, Gabriel ; Maier, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29284401363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Completeness</topic><topic>Computed tomography</topic><topic>Industrial applications</topic><topic>Integer programming</topic><topic>Optimization</topic><topic>Reliability analysis</topic><topic>Trajectory optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Schneider, Linda-Sophie</creatorcontrib><creatorcontrib>Herl, Gabriel</creatorcontrib><creatorcontrib>Maier, Andreas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schneider, Linda-Sophie</au><au>Herl, Gabriel</au><au>Maier, Andreas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Integer Optimization of CT Trajectories using a Discrete Data Completeness Formulation</atitle><jtitle>arXiv.org</jtitle><date>2024-01-29</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>X-ray computed tomography (CT) plays a key role in digitizing three-dimensional structures for a wide range of medical and industrial applications. Traditional CT systems often rely on standard circular and helical scan trajectories, which may not be optimal for challenging scenarios involving large objects, complex structures, or resource constraints. In response to these challenges, we are exploring the potential of twin robotic CT systems, which offer the flexibility to acquire projections from arbitrary views around the object of interest. Ensuring complete and mathematically sound reconstructions becomes critical in such systems. In this work, we present an integer programming-based CT trajectory optimization method. Utilizing discrete data completeness conditions, we formulate an optimization problem to select an optimized set of projections. This approach enforces data completeness and considers absorption-based metrics for reliability evaluation. We compare our method with an equidistant circular CT trajectory and a greedy approach. While greedy already performs well in some cases, we provide a way to improve greedy-based projection selection using an integer optimization approach. Our approach improves CT trajectories and quantifies the optimality of the solution in terms of an optimality gap.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2928440136
source Free E- Journals
subjects Completeness
Computed tomography
Industrial applications
Integer programming
Optimization
Reliability analysis
Trajectory optimization
title Integer Optimization of CT Trajectories using a Discrete Data Completeness Formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Integer%20Optimization%20of%20CT%20Trajectories%20using%20a%20Discrete%20Data%20Completeness%20Formulation&rft.jtitle=arXiv.org&rft.au=Schneider,%20Linda-Sophie&rft.date=2024-01-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2928440136%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928440136&rft_id=info:pmid/&rfr_iscdi=true