Diffusion induced thermal effect and stress in layered Li(Ni0.6Mn0.2Co0.2)O2 cathode materials for button lithium-ion battery electrode plates

This paper develops a coupling model of the relationship between chemical reaction, temperature and stress/strain for Li (Ni Mn Co ) O cathode materials. With the process of reaction, the concentration of electrolyte salt changes rapidly at the beginning of diffusion and tends to dynamic equilibrium...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy harvesting and systems 2024-01, Vol.11 (1)
Hauptverfasser: Xu, Lipeng, Tian, Chongwang, Bao, Chunjiang, Zhou, Fei, Zhao, Jinsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Energy harvesting and systems
container_volume 11
creator Xu, Lipeng
Tian, Chongwang
Bao, Chunjiang
Zhou, Fei
Zhao, Jinsheng
description This paper develops a coupling model of the relationship between chemical reaction, temperature and stress/strain for Li (Ni Mn Co ) O cathode materials. With the process of reaction, the concentration of electrolyte salt changes rapidly at the beginning of diffusion and tends to dynamic equilibrium. The concentration of electrolyte LiPF in electrode materials diffuses from bottom to top with the process of lithium intercalation. In the process of Li-ion intercalation, the temperature rise of porous electrode materials increases sharply at first, then decreases and then increases slowly. The rate of temperature rise in the cathode material increases with the temperature decreases. The volume of electrode material deformed with the expansion along the -axis and the radial bending along the -axis. And the law of stress variation with time is consistent with the temperature-time curve. By the stress-strain distribution nephogram, it is found that the position where the maximum stress is located at the edge of the upper surface, and which is most vulnerable to failure.
doi_str_mv 10.1515/ehs-2022-0095
format Article
fullrecord <record><control><sourceid>proquest_walte</sourceid><recordid>TN_cdi_proquest_journals_2928156974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2928156974</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1861-bff284d98c6613b2bed24c9fb1374437b0ac0e1a57846901095afe91ff1b87723</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhiMEElXpyG6JBYYUn5M49ojKp1ToAnNkJ2fiKk2K7Qj1T_CbcQSCxb7hee89PUlyDnQJBRTX2PqUUcZSSmVxlMxYxmQqSs6P_-YyP00W3m8ppcCKogQxS75urTGjt0NPbN-MNTYktOh2qiNoDNaBqL4hPjj0PhKkUwd0EVrbyxdLl_y5p0u2GuJztWGkVqEdGiQ7FdBZ1XliBkf0GELc39nQ2nGXTl1ahUgcCHaxwk2RfRcz_iw5MTGGi99_nrzd372uHtP15uFpdbNO9yA4pNoYJvJGippzyDTT2LC8lkZDVuZ5VmqqaoqgilLkXFKISpRBCcaAjh5YNk8ufvbu3fAxog_VdhhdHysrJpmAgssyj5T4oT5VF89t8N2Nhzj8w0CryX4V7VeT_WqyDwDZN15UeUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928156974</pqid></control><display><type>article</type><title>Diffusion induced thermal effect and stress in layered Li(Ni0.6Mn0.2Co0.2)O2 cathode materials for button lithium-ion battery electrode plates</title><source>De Gruyter Open Access Journals</source><creator>Xu, Lipeng ; Tian, Chongwang ; Bao, Chunjiang ; Zhou, Fei ; Zhao, Jinsheng</creator><creatorcontrib>Xu, Lipeng ; Tian, Chongwang ; Bao, Chunjiang ; Zhou, Fei ; Zhao, Jinsheng</creatorcontrib><description>This paper develops a coupling model of the relationship between chemical reaction, temperature and stress/strain for Li (Ni Mn Co ) O cathode materials. With the process of reaction, the concentration of electrolyte salt changes rapidly at the beginning of diffusion and tends to dynamic equilibrium. The concentration of electrolyte LiPF in electrode materials diffuses from bottom to top with the process of lithium intercalation. In the process of Li-ion intercalation, the temperature rise of porous electrode materials increases sharply at first, then decreases and then increases slowly. The rate of temperature rise in the cathode material increases with the temperature decreases. The volume of electrode material deformed with the expansion along the -axis and the radial bending along the -axis. And the law of stress variation with time is consistent with the temperature-time curve. By the stress-strain distribution nephogram, it is found that the position where the maximum stress is located at the edge of the upper surface, and which is most vulnerable to failure.</description><identifier>ISSN: 2329-8774</identifier><identifier>EISSN: 2329-8766</identifier><identifier>DOI: 10.1515/ehs-2022-0095</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Cathodes ; Chemical reactions ; coupling relationship ; Diffusion layers ; Electrode materials ; Electrodes ; Electrolytes ; Intercalation ; Li-ion intercalation ; Lithium ; Lithium-ion batteries ; porous electrode materials ; Porous materials ; Rechargeable batteries ; Strain distribution ; stress-strain ; Temperature effects</subject><ispartof>Energy harvesting and systems, 2024-01, Vol.11 (1)</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/ehs-2022-0095/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/ehs-2022-0095/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,66901,68685</link.rule.ids></links><search><creatorcontrib>Xu, Lipeng</creatorcontrib><creatorcontrib>Tian, Chongwang</creatorcontrib><creatorcontrib>Bao, Chunjiang</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Zhao, Jinsheng</creatorcontrib><title>Diffusion induced thermal effect and stress in layered Li(Ni0.6Mn0.2Co0.2)O2 cathode materials for button lithium-ion battery electrode plates</title><title>Energy harvesting and systems</title><description>This paper develops a coupling model of the relationship between chemical reaction, temperature and stress/strain for Li (Ni Mn Co ) O cathode materials. With the process of reaction, the concentration of electrolyte salt changes rapidly at the beginning of diffusion and tends to dynamic equilibrium. The concentration of electrolyte LiPF in electrode materials diffuses from bottom to top with the process of lithium intercalation. In the process of Li-ion intercalation, the temperature rise of porous electrode materials increases sharply at first, then decreases and then increases slowly. The rate of temperature rise in the cathode material increases with the temperature decreases. The volume of electrode material deformed with the expansion along the -axis and the radial bending along the -axis. And the law of stress variation with time is consistent with the temperature-time curve. By the stress-strain distribution nephogram, it is found that the position where the maximum stress is located at the edge of the upper surface, and which is most vulnerable to failure.</description><subject>Cathodes</subject><subject>Chemical reactions</subject><subject>coupling relationship</subject><subject>Diffusion layers</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Intercalation</subject><subject>Li-ion intercalation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>porous electrode materials</subject><subject>Porous materials</subject><subject>Rechargeable batteries</subject><subject>Strain distribution</subject><subject>stress-strain</subject><subject>Temperature effects</subject><issn>2329-8774</issn><issn>2329-8766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpFkD1PwzAQhiMEElXpyG6JBYYUn5M49ojKp1ToAnNkJ2fiKk2K7Qj1T_CbcQSCxb7hee89PUlyDnQJBRTX2PqUUcZSSmVxlMxYxmQqSs6P_-YyP00W3m8ppcCKogQxS75urTGjt0NPbN-MNTYktOh2qiNoDNaBqL4hPjj0PhKkUwd0EVrbyxdLl_y5p0u2GuJztWGkVqEdGiQ7FdBZ1XliBkf0GELc39nQ2nGXTl1ahUgcCHaxwk2RfRcz_iw5MTGGi99_nrzd372uHtP15uFpdbNO9yA4pNoYJvJGippzyDTT2LC8lkZDVuZ5VmqqaoqgilLkXFKISpRBCcaAjh5YNk8ufvbu3fAxog_VdhhdHysrJpmAgssyj5T4oT5VF89t8N2Nhzj8w0CryX4V7VeT_WqyDwDZN15UeUY</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Xu, Lipeng</creator><creator>Tian, Chongwang</creator><creator>Bao, Chunjiang</creator><creator>Zhou, Fei</creator><creator>Zhao, Jinsheng</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20240101</creationdate><title>Diffusion induced thermal effect and stress in layered Li(Ni0.6Mn0.2Co0.2)O2 cathode materials for button lithium-ion battery electrode plates</title><author>Xu, Lipeng ; Tian, Chongwang ; Bao, Chunjiang ; Zhou, Fei ; Zhao, Jinsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1861-bff284d98c6613b2bed24c9fb1374437b0ac0e1a57846901095afe91ff1b87723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cathodes</topic><topic>Chemical reactions</topic><topic>coupling relationship</topic><topic>Diffusion layers</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Intercalation</topic><topic>Li-ion intercalation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>porous electrode materials</topic><topic>Porous materials</topic><topic>Rechargeable batteries</topic><topic>Strain distribution</topic><topic>stress-strain</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Lipeng</creatorcontrib><creatorcontrib>Tian, Chongwang</creatorcontrib><creatorcontrib>Bao, Chunjiang</creatorcontrib><creatorcontrib>Zhou, Fei</creatorcontrib><creatorcontrib>Zhao, Jinsheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Energy harvesting and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Lipeng</au><au>Tian, Chongwang</au><au>Bao, Chunjiang</au><au>Zhou, Fei</au><au>Zhao, Jinsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diffusion induced thermal effect and stress in layered Li(Ni0.6Mn0.2Co0.2)O2 cathode materials for button lithium-ion battery electrode plates</atitle><jtitle>Energy harvesting and systems</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><issn>2329-8774</issn><eissn>2329-8766</eissn><abstract>This paper develops a coupling model of the relationship between chemical reaction, temperature and stress/strain for Li (Ni Mn Co ) O cathode materials. With the process of reaction, the concentration of electrolyte salt changes rapidly at the beginning of diffusion and tends to dynamic equilibrium. The concentration of electrolyte LiPF in electrode materials diffuses from bottom to top with the process of lithium intercalation. In the process of Li-ion intercalation, the temperature rise of porous electrode materials increases sharply at first, then decreases and then increases slowly. The rate of temperature rise in the cathode material increases with the temperature decreases. The volume of electrode material deformed with the expansion along the -axis and the radial bending along the -axis. And the law of stress variation with time is consistent with the temperature-time curve. By the stress-strain distribution nephogram, it is found that the position where the maximum stress is located at the edge of the upper surface, and which is most vulnerable to failure.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/ehs-2022-0095</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2329-8774
ispartof Energy harvesting and systems, 2024-01, Vol.11 (1)
issn 2329-8774
2329-8766
language eng
recordid cdi_proquest_journals_2928156974
source De Gruyter Open Access Journals
subjects Cathodes
Chemical reactions
coupling relationship
Diffusion layers
Electrode materials
Electrodes
Electrolytes
Intercalation
Li-ion intercalation
Lithium
Lithium-ion batteries
porous electrode materials
Porous materials
Rechargeable batteries
Strain distribution
stress-strain
Temperature effects
title Diffusion induced thermal effect and stress in layered Li(Ni0.6Mn0.2Co0.2)O2 cathode materials for button lithium-ion battery electrode plates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_walte&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diffusion%20induced%20thermal%20effect%20and%20stress%20in%20layered%20Li(Ni0.6Mn0.2Co0.2)O2%20cathode%20materials%20for%20button%20lithium-ion%20battery%20electrode%20plates&rft.jtitle=Energy%20harvesting%20and%20systems&rft.au=Xu,%20Lipeng&rft.date=2024-01-01&rft.volume=11&rft.issue=1&rft.issn=2329-8774&rft.eissn=2329-8766&rft_id=info:doi/10.1515/ehs-2022-0095&rft_dat=%3Cproquest_walte%3E2928156974%3C/proquest_walte%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928156974&rft_id=info:pmid/&rfr_iscdi=true