Field-induced macroscopic flow of a dilute self-assembling magnetic colloid under rotating magnetic fields

Flow generation by colloidal motors activated by external stimuli is an important issue for active matter physics and several nanotechnological or biomedical applications. For instance, flow recirculation generated by rotating magnetic self-assemblies allows effective ‘pumping’ of a thrombolytic dru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-02, Vol.981, Article A11
Hauptverfasser: Queiros Campos, J., Raboisson-Michel, M., Schaub, S., Toe, S., Boulant, L., Verger-Dubois, G., Zubarev, A., Kuzhir, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 981
creator Queiros Campos, J.
Raboisson-Michel, M.
Schaub, S.
Toe, S.
Boulant, L.
Verger-Dubois, G.
Zubarev, A.
Kuzhir, P.
description Flow generation by colloidal motors activated by external stimuli is an important issue for active matter physics and several nanotechnological or biomedical applications. For instance, flow recirculation generated by rotating magnetic self-assemblies allows effective ‘pumping’ of a thrombolytic drug towards a blood clot along a blocked vessel. However, the physics of the flow generation in this case remains still poorly explored. This study is focused on the generation of a recirculation flow of a magnetic colloid (aqueous suspension of iron oxide nanoparticles with partially screened electrostatic repulsion) within a closed microfluidic channel via application of an external rotating magnetic field. The colloid undergoes reversible phase separation manifested through the appearance of micron-sized elongated aggregates. They synchronously rotate with the magnetic field and can generate macroscopic flows only in the presence of gradients of the aggregate concentration across the channel induced by superposition of a weak magnetic field gradient to the homogeneous rotating field. We achieve recirculation flows with a characteristic speed ${\sim} 5{-}8\;{\rm \mu}\textrm{m}\;{\textrm{s}^{ - \textrm{1}}}$ at low magnetic field amplitude and frequency (${H_0} \approx 3{-}10\;\textrm{kA}\;{\textrm{m}^{ - 1}}$, ${f = 5{-}15\ \textrm{Hz}}$) at low nanoparticle volume fraction ${\varphi _p} = (1.6{-}3.2) \times {10^{ - 3}}$. The concentration and velocity profiles have been assessed experimentally through particle tracking and particle image velocimetry, and have also been computed using the hydrodynamic diffusion approach coupled with the momentum balance equation with a magnetic torque term. The model correctly reproduces the shape of the experimental concentration and velocity fields and explains complex behaviours of the average recirculation speed as a function of governing parameters (${H_0}$, f, ${\varphi _p}$, channel size).
doi_str_mv 10.1017/jfm.2024.48
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2928127525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2024_48</cupid><sourcerecordid>2928127525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-bc7a25bde445234d0d5664ea56531e633e19e832ba1dbfed29286953f56b1dbd3</originalsourceid><addsrcrecordid>eNpt0FFLwzAQB_AgCs7pk18g4KNkJmmSto8ynAoDX_Q5pM1lZKTNTFrEb2_LBiL4dHD34477I3TL6IpRVj7sXbfilIuVqM7QgglVk1IJeY4WlHJOGOP0El3lvKeUFbQuF2i_8RAs8b0dW7C4M22KuY0H32IX4heODhtsfRgHwBmCIyZn6Jrg-92Edz0Mk2xjCNFbPPYWEk5xMMOfuZtv5Gt04UzIcHOqS_SxeXpfv5Dt2_Pr-nFLWi7LgTRtabhsLAgheSEstVIpAUYqWTBQRQGshqrgjWG2cWB5zStVy8JJ1UwdWyzR3XHvIcXPEfKg93FM_XRSz5bxUnI5qfujmh_OCZw-JN-Z9K0Z1XOYegpTz2FqUU2anLTpmuTtDn6X_ud_AAqwd9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2928127525</pqid></control><display><type>article</type><title>Field-induced macroscopic flow of a dilute self-assembling magnetic colloid under rotating magnetic fields</title><source>Cambridge University Press Journals Complete</source><creator>Queiros Campos, J. ; Raboisson-Michel, M. ; Schaub, S. ; Toe, S. ; Boulant, L. ; Verger-Dubois, G. ; Zubarev, A. ; Kuzhir, P.</creator><creatorcontrib>Queiros Campos, J. ; Raboisson-Michel, M. ; Schaub, S. ; Toe, S. ; Boulant, L. ; Verger-Dubois, G. ; Zubarev, A. ; Kuzhir, P.</creatorcontrib><description>Flow generation by colloidal motors activated by external stimuli is an important issue for active matter physics and several nanotechnological or biomedical applications. For instance, flow recirculation generated by rotating magnetic self-assemblies allows effective ‘pumping’ of a thrombolytic drug towards a blood clot along a blocked vessel. However, the physics of the flow generation in this case remains still poorly explored. This study is focused on the generation of a recirculation flow of a magnetic colloid (aqueous suspension of iron oxide nanoparticles with partially screened electrostatic repulsion) within a closed microfluidic channel via application of an external rotating magnetic field. The colloid undergoes reversible phase separation manifested through the appearance of micron-sized elongated aggregates. They synchronously rotate with the magnetic field and can generate macroscopic flows only in the presence of gradients of the aggregate concentration across the channel induced by superposition of a weak magnetic field gradient to the homogeneous rotating field. We achieve recirculation flows with a characteristic speed ${\sim} 5{-}8\;{\rm \mu}\textrm{m}\;{\textrm{s}^{ - \textrm{1}}}$ at low magnetic field amplitude and frequency (${H_0} \approx 3{-}10\;\textrm{kA}\;{\textrm{m}^{ - 1}}$, ${f = 5{-}15\ \textrm{Hz}}$) at low nanoparticle volume fraction ${\varphi _p} = (1.6{-}3.2) \times {10^{ - 3}}$. The concentration and velocity profiles have been assessed experimentally through particle tracking and particle image velocimetry, and have also been computed using the hydrodynamic diffusion approach coupled with the momentum balance equation with a magnetic torque term. The model correctly reproduces the shape of the experimental concentration and velocity fields and explains complex behaviours of the average recirculation speed as a function of governing parameters (${H_0}$, f, ${\varphi _p}$, channel size).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2024.48</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aggregates ; Biomedical materials ; Blood clots ; Blood coagulation ; Blood vessels ; Colloids ; Concentration gradient ; External stimuli ; Iron oxides ; JFM Papers ; Magnetic field ; Magnetic fields ; Microfluidics ; Momentum ; Nanoparticles ; Nanotechnology ; Particle image velocimetry ; Particle tracking ; Phase separation ; Physics ; Rotation ; Self-assembly ; Thrombolysis ; Torque ; Velocity ; Velocity distribution ; Velocity profiles ; Viscosity ; Vortices</subject><ispartof>Journal of fluid mechanics, 2024-02, Vol.981, Article A11</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-bc7a25bde445234d0d5664ea56531e633e19e832ba1dbfed29286953f56b1dbd3</cites><orcidid>0000-0001-5826-9852 ; 0000-0001-7089-6197 ; 0000-0003-0786-1244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211202400048X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Queiros Campos, J.</creatorcontrib><creatorcontrib>Raboisson-Michel, M.</creatorcontrib><creatorcontrib>Schaub, S.</creatorcontrib><creatorcontrib>Toe, S.</creatorcontrib><creatorcontrib>Boulant, L.</creatorcontrib><creatorcontrib>Verger-Dubois, G.</creatorcontrib><creatorcontrib>Zubarev, A.</creatorcontrib><creatorcontrib>Kuzhir, P.</creatorcontrib><title>Field-induced macroscopic flow of a dilute self-assembling magnetic colloid under rotating magnetic fields</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Flow generation by colloidal motors activated by external stimuli is an important issue for active matter physics and several nanotechnological or biomedical applications. For instance, flow recirculation generated by rotating magnetic self-assemblies allows effective ‘pumping’ of a thrombolytic drug towards a blood clot along a blocked vessel. However, the physics of the flow generation in this case remains still poorly explored. This study is focused on the generation of a recirculation flow of a magnetic colloid (aqueous suspension of iron oxide nanoparticles with partially screened electrostatic repulsion) within a closed microfluidic channel via application of an external rotating magnetic field. The colloid undergoes reversible phase separation manifested through the appearance of micron-sized elongated aggregates. They synchronously rotate with the magnetic field and can generate macroscopic flows only in the presence of gradients of the aggregate concentration across the channel induced by superposition of a weak magnetic field gradient to the homogeneous rotating field. We achieve recirculation flows with a characteristic speed ${\sim} 5{-}8\;{\rm \mu}\textrm{m}\;{\textrm{s}^{ - \textrm{1}}}$ at low magnetic field amplitude and frequency (${H_0} \approx 3{-}10\;\textrm{kA}\;{\textrm{m}^{ - 1}}$, ${f = 5{-}15\ \textrm{Hz}}$) at low nanoparticle volume fraction ${\varphi _p} = (1.6{-}3.2) \times {10^{ - 3}}$. The concentration and velocity profiles have been assessed experimentally through particle tracking and particle image velocimetry, and have also been computed using the hydrodynamic diffusion approach coupled with the momentum balance equation with a magnetic torque term. The model correctly reproduces the shape of the experimental concentration and velocity fields and explains complex behaviours of the average recirculation speed as a function of governing parameters (${H_0}$, f, ${\varphi _p}$, channel size).</description><subject>Aggregates</subject><subject>Biomedical materials</subject><subject>Blood clots</subject><subject>Blood coagulation</subject><subject>Blood vessels</subject><subject>Colloids</subject><subject>Concentration gradient</subject><subject>External stimuli</subject><subject>Iron oxides</subject><subject>JFM Papers</subject><subject>Magnetic field</subject><subject>Magnetic fields</subject><subject>Microfluidics</subject><subject>Momentum</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Particle image velocimetry</subject><subject>Particle tracking</subject><subject>Phase separation</subject><subject>Physics</subject><subject>Rotation</subject><subject>Self-assembly</subject><subject>Thrombolysis</subject><subject>Torque</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity profiles</subject><subject>Viscosity</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpt0FFLwzAQB_AgCs7pk18g4KNkJmmSto8ynAoDX_Q5pM1lZKTNTFrEb2_LBiL4dHD34477I3TL6IpRVj7sXbfilIuVqM7QgglVk1IJeY4WlHJOGOP0El3lvKeUFbQuF2i_8RAs8b0dW7C4M22KuY0H32IX4heODhtsfRgHwBmCIyZn6Jrg-92Edz0Mk2xjCNFbPPYWEk5xMMOfuZtv5Gt04UzIcHOqS_SxeXpfv5Dt2_Pr-nFLWi7LgTRtabhsLAgheSEstVIpAUYqWTBQRQGshqrgjWG2cWB5zStVy8JJ1UwdWyzR3XHvIcXPEfKg93FM_XRSz5bxUnI5qfujmh_OCZw-JN-Z9K0Z1XOYegpTz2FqUU2anLTpmuTtDn6X_ud_AAqwd9w</recordid><startdate>20240219</startdate><enddate>20240219</enddate><creator>Queiros Campos, J.</creator><creator>Raboisson-Michel, M.</creator><creator>Schaub, S.</creator><creator>Toe, S.</creator><creator>Boulant, L.</creator><creator>Verger-Dubois, G.</creator><creator>Zubarev, A.</creator><creator>Kuzhir, P.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5826-9852</orcidid><orcidid>https://orcid.org/0000-0001-7089-6197</orcidid><orcidid>https://orcid.org/0000-0003-0786-1244</orcidid></search><sort><creationdate>20240219</creationdate><title>Field-induced macroscopic flow of a dilute self-assembling magnetic colloid under rotating magnetic fields</title><author>Queiros Campos, J. ; Raboisson-Michel, M. ; Schaub, S. ; Toe, S. ; Boulant, L. ; Verger-Dubois, G. ; Zubarev, A. ; Kuzhir, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-bc7a25bde445234d0d5664ea56531e633e19e832ba1dbfed29286953f56b1dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aggregates</topic><topic>Biomedical materials</topic><topic>Blood clots</topic><topic>Blood coagulation</topic><topic>Blood vessels</topic><topic>Colloids</topic><topic>Concentration gradient</topic><topic>External stimuli</topic><topic>Iron oxides</topic><topic>JFM Papers</topic><topic>Magnetic field</topic><topic>Magnetic fields</topic><topic>Microfluidics</topic><topic>Momentum</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Particle image velocimetry</topic><topic>Particle tracking</topic><topic>Phase separation</topic><topic>Physics</topic><topic>Rotation</topic><topic>Self-assembly</topic><topic>Thrombolysis</topic><topic>Torque</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity profiles</topic><topic>Viscosity</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Queiros Campos, J.</creatorcontrib><creatorcontrib>Raboisson-Michel, M.</creatorcontrib><creatorcontrib>Schaub, S.</creatorcontrib><creatorcontrib>Toe, S.</creatorcontrib><creatorcontrib>Boulant, L.</creatorcontrib><creatorcontrib>Verger-Dubois, G.</creatorcontrib><creatorcontrib>Zubarev, A.</creatorcontrib><creatorcontrib>Kuzhir, P.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Queiros Campos, J.</au><au>Raboisson-Michel, M.</au><au>Schaub, S.</au><au>Toe, S.</au><au>Boulant, L.</au><au>Verger-Dubois, G.</au><au>Zubarev, A.</au><au>Kuzhir, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Field-induced macroscopic flow of a dilute self-assembling magnetic colloid under rotating magnetic fields</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-02-19</date><risdate>2024</risdate><volume>981</volume><artnum>A11</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Flow generation by colloidal motors activated by external stimuli is an important issue for active matter physics and several nanotechnological or biomedical applications. For instance, flow recirculation generated by rotating magnetic self-assemblies allows effective ‘pumping’ of a thrombolytic drug towards a blood clot along a blocked vessel. However, the physics of the flow generation in this case remains still poorly explored. This study is focused on the generation of a recirculation flow of a magnetic colloid (aqueous suspension of iron oxide nanoparticles with partially screened electrostatic repulsion) within a closed microfluidic channel via application of an external rotating magnetic field. The colloid undergoes reversible phase separation manifested through the appearance of micron-sized elongated aggregates. They synchronously rotate with the magnetic field and can generate macroscopic flows only in the presence of gradients of the aggregate concentration across the channel induced by superposition of a weak magnetic field gradient to the homogeneous rotating field. We achieve recirculation flows with a characteristic speed ${\sim} 5{-}8\;{\rm \mu}\textrm{m}\;{\textrm{s}^{ - \textrm{1}}}$ at low magnetic field amplitude and frequency (${H_0} \approx 3{-}10\;\textrm{kA}\;{\textrm{m}^{ - 1}}$, ${f = 5{-}15\ \textrm{Hz}}$) at low nanoparticle volume fraction ${\varphi _p} = (1.6{-}3.2) \times {10^{ - 3}}$. The concentration and velocity profiles have been assessed experimentally through particle tracking and particle image velocimetry, and have also been computed using the hydrodynamic diffusion approach coupled with the momentum balance equation with a magnetic torque term. The model correctly reproduces the shape of the experimental concentration and velocity fields and explains complex behaviours of the average recirculation speed as a function of governing parameters (${H_0}$, f, ${\varphi _p}$, channel size).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2024.48</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0001-5826-9852</orcidid><orcidid>https://orcid.org/0000-0001-7089-6197</orcidid><orcidid>https://orcid.org/0000-0003-0786-1244</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-02, Vol.981, Article A11
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2928127525
source Cambridge University Press Journals Complete
subjects Aggregates
Biomedical materials
Blood clots
Blood coagulation
Blood vessels
Colloids
Concentration gradient
External stimuli
Iron oxides
JFM Papers
Magnetic field
Magnetic fields
Microfluidics
Momentum
Nanoparticles
Nanotechnology
Particle image velocimetry
Particle tracking
Phase separation
Physics
Rotation
Self-assembly
Thrombolysis
Torque
Velocity
Velocity distribution
Velocity profiles
Viscosity
Vortices
title Field-induced macroscopic flow of a dilute self-assembling magnetic colloid under rotating magnetic fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Field-induced%20macroscopic%20flow%20of%20a%20dilute%20self-assembling%20magnetic%20colloid%20under%20rotating%20magnetic%20fields&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Queiros%20Campos,%20J.&rft.date=2024-02-19&rft.volume=981&rft.artnum=A11&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2024.48&rft_dat=%3Cproquest_cross%3E2928127525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2928127525&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2024_48&rfr_iscdi=true