On the Error in Determining the Protective Layer Boundary in the Inverse Heat Problem

The paper studies the problem of determining the error introduced by inaccuracy in determining the thickness of a protective heat-resistant coating of composite materials. The mathematical problem is the heat equation on an inhomogeneous half-line. The temperature on the outer side of the half-line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied and industrial mathematics 2023-09, Vol.17 (4), p.859-873
Hauptverfasser: Tanana, V. P., Markov, B. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 873
container_issue 4
container_start_page 859
container_title Journal of applied and industrial mathematics
container_volume 17
creator Tanana, V. P.
Markov, B. A.
description The paper studies the problem of determining the error introduced by inaccuracy in determining the thickness of a protective heat-resistant coating of composite materials. The mathematical problem is the heat equation on an inhomogeneous half-line. The temperature on the outer side of the half-line ( ) is considered unknown over an infinite time interval. To find it, the temperature is measured at the interface of the media at the point . An analytical study of the direct problem is carried out and enables a rigorous statement of the inverse problem and determining the functional spaces in which it is natural to solve the inverse problem. The main difficulty that the present paper aims at solving is obtaining an estimate for the error of the approximate solution. To estimate the conditional correctness modulus, the projection regularization method is used; this allows obtaining order-accurate estimates.
doi_str_mv 10.1134/S1990478923040142
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927855683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927855683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1832-108b13adc51992011245dd08a52afe24647f1d8c930097c8f1111ae767f39f043</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWLQ_wFvA82omyW6So9ZqC4UK2vOS7k7qSputybbQf2_Wih7Eucww87zzRcgVsBsAIW9fwBgmlTZcMMlA8hMy6FOZVEad_sTanJNhjM2SCeCFKAo-IIu5p90b0nEIbaCNpw_YYdg0vvGrr8JzaDusumaPdGYPGOh9u_O1DYce7oGp32OISCdou55ernFzSc6cXUccfvsLsngcv44m2Wz-NB3dzbIKtOAZML0EYesqTxtyBsBlXtdM25xbh1wWUjmodWUEY0ZV2kEyi6pQThjHpLgg18e-29B-7DB25Xu7Cz6NLLnhSud5oUWi4EhVoY0xoCu3odmkE0pgZf_A8s8Dk4YfNTGxfoXht_P_ok-73m_D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927855683</pqid></control><display><type>article</type><title>On the Error in Determining the Protective Layer Boundary in the Inverse Heat Problem</title><source>SpringerNature Journals</source><creator>Tanana, V. P. ; Markov, B. A.</creator><creatorcontrib>Tanana, V. P. ; Markov, B. A.</creatorcontrib><description>The paper studies the problem of determining the error introduced by inaccuracy in determining the thickness of a protective heat-resistant coating of composite materials. The mathematical problem is the heat equation on an inhomogeneous half-line. The temperature on the outer side of the half-line ( ) is considered unknown over an infinite time interval. To find it, the temperature is measured at the interface of the media at the point . An analytical study of the direct problem is carried out and enables a rigorous statement of the inverse problem and determining the functional spaces in which it is natural to solve the inverse problem. The main difficulty that the present paper aims at solving is obtaining an estimate for the error of the approximate solution. To estimate the conditional correctness modulus, the projection regularization method is used; this allows obtaining order-accurate estimates.</description><identifier>ISSN: 1990-4789</identifier><identifier>EISSN: 1990-4797</identifier><identifier>DOI: 10.1134/S1990478923040142</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Composite materials ; Error correction ; Fourier analysis ; Heat resistant materials ; Inhomogeneous systems ; Inverse problems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Regularization ; Thermodynamics</subject><ispartof>Journal of applied and industrial mathematics, 2023-09, Vol.17 (4), p.859-873</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1832-108b13adc51992011245dd08a52afe24647f1d8c930097c8f1111ae767f39f043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1990478923040142$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1990478923040142$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Tanana, V. P.</creatorcontrib><creatorcontrib>Markov, B. A.</creatorcontrib><title>On the Error in Determining the Protective Layer Boundary in the Inverse Heat Problem</title><title>Journal of applied and industrial mathematics</title><addtitle>J. Appl. Ind. Math</addtitle><description>The paper studies the problem of determining the error introduced by inaccuracy in determining the thickness of a protective heat-resistant coating of composite materials. The mathematical problem is the heat equation on an inhomogeneous half-line. The temperature on the outer side of the half-line ( ) is considered unknown over an infinite time interval. To find it, the temperature is measured at the interface of the media at the point . An analytical study of the direct problem is carried out and enables a rigorous statement of the inverse problem and determining the functional spaces in which it is natural to solve the inverse problem. The main difficulty that the present paper aims at solving is obtaining an estimate for the error of the approximate solution. To estimate the conditional correctness modulus, the projection regularization method is used; this allows obtaining order-accurate estimates.</description><subject>Composite materials</subject><subject>Error correction</subject><subject>Fourier analysis</subject><subject>Heat resistant materials</subject><subject>Inhomogeneous systems</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularization</subject><subject>Thermodynamics</subject><issn>1990-4789</issn><issn>1990-4797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWLQ_wFvA82omyW6So9ZqC4UK2vOS7k7qSputybbQf2_Wih7Eucww87zzRcgVsBsAIW9fwBgmlTZcMMlA8hMy6FOZVEad_sTanJNhjM2SCeCFKAo-IIu5p90b0nEIbaCNpw_YYdg0vvGrr8JzaDusumaPdGYPGOh9u_O1DYce7oGp32OISCdou55ernFzSc6cXUccfvsLsngcv44m2Wz-NB3dzbIKtOAZML0EYesqTxtyBsBlXtdM25xbh1wWUjmodWUEY0ZV2kEyi6pQThjHpLgg18e-29B-7DB25Xu7Cz6NLLnhSud5oUWi4EhVoY0xoCu3odmkE0pgZf_A8s8Dk4YfNTGxfoXht_P_ok-73m_D</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Tanana, V. P.</creator><creator>Markov, B. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20230901</creationdate><title>On the Error in Determining the Protective Layer Boundary in the Inverse Heat Problem</title><author>Tanana, V. P. ; Markov, B. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1832-108b13adc51992011245dd08a52afe24647f1d8c930097c8f1111ae767f39f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composite materials</topic><topic>Error correction</topic><topic>Fourier analysis</topic><topic>Heat resistant materials</topic><topic>Inhomogeneous systems</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularization</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanana, V. P.</creatorcontrib><creatorcontrib>Markov, B. A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of applied and industrial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanana, V. P.</au><au>Markov, B. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Error in Determining the Protective Layer Boundary in the Inverse Heat Problem</atitle><jtitle>Journal of applied and industrial mathematics</jtitle><stitle>J. Appl. Ind. Math</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>17</volume><issue>4</issue><spage>859</spage><epage>873</epage><pages>859-873</pages><issn>1990-4789</issn><eissn>1990-4797</eissn><abstract>The paper studies the problem of determining the error introduced by inaccuracy in determining the thickness of a protective heat-resistant coating of composite materials. The mathematical problem is the heat equation on an inhomogeneous half-line. The temperature on the outer side of the half-line ( ) is considered unknown over an infinite time interval. To find it, the temperature is measured at the interface of the media at the point . An analytical study of the direct problem is carried out and enables a rigorous statement of the inverse problem and determining the functional spaces in which it is natural to solve the inverse problem. The main difficulty that the present paper aims at solving is obtaining an estimate for the error of the approximate solution. To estimate the conditional correctness modulus, the projection regularization method is used; this allows obtaining order-accurate estimates.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990478923040142</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-4789
ispartof Journal of applied and industrial mathematics, 2023-09, Vol.17 (4), p.859-873
issn 1990-4789
1990-4797
language eng
recordid cdi_proquest_journals_2927855683
source SpringerNature Journals
subjects Composite materials
Error correction
Fourier analysis
Heat resistant materials
Inhomogeneous systems
Inverse problems
Mathematical analysis
Mathematics
Mathematics and Statistics
Regularization
Thermodynamics
title On the Error in Determining the Protective Layer Boundary in the Inverse Heat Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Error%20in%20Determining%20the%20Protective%20Layer%20Boundary%20in%20the%20Inverse%20Heat%20Problem&rft.jtitle=Journal%20of%20applied%20and%20industrial%20mathematics&rft.au=Tanana,%20V.%20P.&rft.date=2023-09-01&rft.volume=17&rft.issue=4&rft.spage=859&rft.epage=873&rft.pages=859-873&rft.issn=1990-4789&rft.eissn=1990-4797&rft_id=info:doi/10.1134/S1990478923040142&rft_dat=%3Cproquest_cross%3E2927855683%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927855683&rft_id=info:pmid/&rfr_iscdi=true