An augmented AI-based hybrid fraud detection framework for invoicing platforms

In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2024, Vol.54 (2), p.1297-1310
Hauptverfasser: Wahid, Dewan F., Hassini, Elkafi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1310
container_issue 2
container_start_page 1297
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 54
creator Wahid, Dewan F.
Hassini, Elkafi
description In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies due to the limitation of time and other resources. A fully automated fraud detection model can be useful, but it creates a risk of false-positive identification. This paper proposed a hybrid fraud detection framework when only a small set of labelled (fraud/non-fraud) data is available, and human input is required in the final decision-making step. This framework used a combination of unsupervised and supervised machine learning, red-flag prioritization, and an augmented AI approach containing a human-in-the-loop process. It also proposed a weighted center based on the feature importance scores for the fraud risk cluster and used it in the red-flag prioritization process. Finally, the approach is illustrated using a case study to identify fraudulent users in an invoicing platform. Our hybrid framework showed promising results in identifying fraudulent users and improving human performance when human input is required to make the final decision.
doi_str_mv 10.1007/s10489-023-05223-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927741292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927741292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3a28332c269b7b2e78cb434910ad8ea9822286332c12ed62554ac26699d3636e3</originalsourceid><addsrcrecordid>eNp9kM1LwzAYxoMoOKf_gKeA52jyJk2a4xh-DIZeFLyFtE1n55rOpNXtvzezgjcv7xe_53nhQeiS0WtGqbqJjIpcEwqc0AxS3R2hCcsUJ0podYwmVIMgUurXU3QW45pSyjllE_Q489gOq9b53lV4tiCFjWl42xehqXAd7FDhyvWu7JvOH_bWfXXhHdddwI3_7Jqy8Su83dg-Xdp4jk5qu4nu4rdP0cvd7fP8gSyf7hfz2ZKUoGhPuIWccyhB6kIV4FReFoILzaitcmd1DgC5PBAMXCUhy4RNsNS64pJLx6foavTdhu5jcLE3624IPr00oEEpwVJLFIxUGboYg6vNNjStDXvDqDnkZsbcTMrN_ORmdknER1FMsF-58Gf9j-oby91wBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927741292</pqid></control><display><type>article</type><title>An augmented AI-based hybrid fraud detection framework for invoicing platforms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wahid, Dewan F. ; Hassini, Elkafi</creator><creatorcontrib>Wahid, Dewan F. ; Hassini, Elkafi</creatorcontrib><description>In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies due to the limitation of time and other resources. A fully automated fraud detection model can be useful, but it creates a risk of false-positive identification. This paper proposed a hybrid fraud detection framework when only a small set of labelled (fraud/non-fraud) data is available, and human input is required in the final decision-making step. This framework used a combination of unsupervised and supervised machine learning, red-flag prioritization, and an augmented AI approach containing a human-in-the-loop process. It also proposed a weighted center based on the feature importance scores for the fraud risk cluster and used it in the red-flag prioritization process. Finally, the approach is illustrated using a case study to identify fraudulent users in an invoicing platform. Our hybrid framework showed promising results in identifying fraudulent users and improving human performance when human input is required to make the final decision.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-023-05223-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Flags ; Fraud ; Fraud prevention ; Human performance ; Invoicing ; Machine learning ; Machines ; Manufacturing ; Mechanical Engineering ; Processes ; Supervised learning</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2024, Vol.54 (2), p.1297-1310</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3a28332c269b7b2e78cb434910ad8ea9822286332c12ed62554ac26699d3636e3</cites><orcidid>0000-0002-3925-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-023-05223-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-023-05223-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Wahid, Dewan F.</creatorcontrib><creatorcontrib>Hassini, Elkafi</creatorcontrib><title>An augmented AI-based hybrid fraud detection framework for invoicing platforms</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies due to the limitation of time and other resources. A fully automated fraud detection model can be useful, but it creates a risk of false-positive identification. This paper proposed a hybrid fraud detection framework when only a small set of labelled (fraud/non-fraud) data is available, and human input is required in the final decision-making step. This framework used a combination of unsupervised and supervised machine learning, red-flag prioritization, and an augmented AI approach containing a human-in-the-loop process. It also proposed a weighted center based on the feature importance scores for the fraud risk cluster and used it in the red-flag prioritization process. Finally, the approach is illustrated using a case study to identify fraudulent users in an invoicing platform. Our hybrid framework showed promising results in identifying fraudulent users and improving human performance when human input is required to make the final decision.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Flags</subject><subject>Fraud</subject><subject>Fraud prevention</subject><subject>Human performance</subject><subject>Invoicing</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Processes</subject><subject>Supervised learning</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAYxoMoOKf_gKeA52jyJk2a4xh-DIZeFLyFtE1n55rOpNXtvzezgjcv7xe_53nhQeiS0WtGqbqJjIpcEwqc0AxS3R2hCcsUJ0podYwmVIMgUurXU3QW45pSyjllE_Q489gOq9b53lV4tiCFjWl42xehqXAd7FDhyvWu7JvOH_bWfXXhHdddwI3_7Jqy8Su83dg-Xdp4jk5qu4nu4rdP0cvd7fP8gSyf7hfz2ZKUoGhPuIWccyhB6kIV4FReFoILzaitcmd1DgC5PBAMXCUhy4RNsNS64pJLx6foavTdhu5jcLE3624IPr00oEEpwVJLFIxUGboYg6vNNjStDXvDqDnkZsbcTMrN_ORmdknER1FMsF-58Gf9j-oby91wBw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wahid, Dewan F.</creator><creator>Hassini, Elkafi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3925-9621</orcidid></search><sort><creationdate>2024</creationdate><title>An augmented AI-based hybrid fraud detection framework for invoicing platforms</title><author>Wahid, Dewan F. ; Hassini, Elkafi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3a28332c269b7b2e78cb434910ad8ea9822286332c12ed62554ac26699d3636e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Flags</topic><topic>Fraud</topic><topic>Fraud prevention</topic><topic>Human performance</topic><topic>Invoicing</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Processes</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahid, Dewan F.</creatorcontrib><creatorcontrib>Hassini, Elkafi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahid, Dewan F.</au><au>Hassini, Elkafi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An augmented AI-based hybrid fraud detection framework for invoicing platforms</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2024</date><risdate>2024</risdate><volume>54</volume><issue>2</issue><spage>1297</spage><epage>1310</epage><pages>1297-1310</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies due to the limitation of time and other resources. A fully automated fraud detection model can be useful, but it creates a risk of false-positive identification. This paper proposed a hybrid fraud detection framework when only a small set of labelled (fraud/non-fraud) data is available, and human input is required in the final decision-making step. This framework used a combination of unsupervised and supervised machine learning, red-flag prioritization, and an augmented AI approach containing a human-in-the-loop process. It also proposed a weighted center based on the feature importance scores for the fraud risk cluster and used it in the red-flag prioritization process. Finally, the approach is illustrated using a case study to identify fraudulent users in an invoicing platform. Our hybrid framework showed promising results in identifying fraudulent users and improving human performance when human input is required to make the final decision.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-023-05223-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3925-9621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2024, Vol.54 (2), p.1297-1310
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2927741292
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Flags
Fraud
Fraud prevention
Human performance
Invoicing
Machine learning
Machines
Manufacturing
Mechanical Engineering
Processes
Supervised learning
title An augmented AI-based hybrid fraud detection framework for invoicing platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20augmented%20AI-based%20hybrid%20fraud%20detection%20framework%20for%20invoicing%20platforms&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Wahid,%20Dewan%20F.&rft.date=2024&rft.volume=54&rft.issue=2&rft.spage=1297&rft.epage=1310&rft.pages=1297-1310&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-023-05223-x&rft_dat=%3Cproquest_cross%3E2927741292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927741292&rft_id=info:pmid/&rfr_iscdi=true