An augmented AI-based hybrid fraud detection framework for invoicing platforms
In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies d...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2024, Vol.54 (2), p.1297-1310 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1310 |
---|---|
container_issue | 2 |
container_start_page | 1297 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 54 |
creator | Wahid, Dewan F. Hassini, Elkafi |
description | In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies due to the limitation of time and other resources. A fully automated fraud detection model can be useful, but it creates a risk of false-positive identification. This paper proposed a hybrid fraud detection framework when only a small set of labelled (fraud/non-fraud) data is available, and human input is required in the final decision-making step. This framework used a combination of unsupervised and supervised machine learning, red-flag prioritization, and an augmented AI approach containing a human-in-the-loop process. It also proposed a weighted center based on the feature importance scores for the fraud risk cluster and used it in the red-flag prioritization process. Finally, the approach is illustrated using a case study to identify fraudulent users in an invoicing platform. Our hybrid framework showed promising results in identifying fraudulent users and improving human performance when human input is required to make the final decision. |
doi_str_mv | 10.1007/s10489-023-05223-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927741292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927741292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-3a28332c269b7b2e78cb434910ad8ea9822286332c12ed62554ac26699d3636e3</originalsourceid><addsrcrecordid>eNp9kM1LwzAYxoMoOKf_gKeA52jyJk2a4xh-DIZeFLyFtE1n55rOpNXtvzezgjcv7xe_53nhQeiS0WtGqbqJjIpcEwqc0AxS3R2hCcsUJ0podYwmVIMgUurXU3QW45pSyjllE_Q489gOq9b53lV4tiCFjWl42xehqXAd7FDhyvWu7JvOH_bWfXXhHdddwI3_7Jqy8Su83dg-Xdp4jk5qu4nu4rdP0cvd7fP8gSyf7hfz2ZKUoGhPuIWccyhB6kIV4FReFoILzaitcmd1DgC5PBAMXCUhy4RNsNS64pJLx6foavTdhu5jcLE3624IPr00oEEpwVJLFIxUGboYg6vNNjStDXvDqDnkZsbcTMrN_ORmdknER1FMsF-58Gf9j-oby91wBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927741292</pqid></control><display><type>article</type><title>An augmented AI-based hybrid fraud detection framework for invoicing platforms</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wahid, Dewan F. ; Hassini, Elkafi</creator><creatorcontrib>Wahid, Dewan F. ; Hassini, Elkafi</creatorcontrib><description>In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies due to the limitation of time and other resources. A fully automated fraud detection model can be useful, but it creates a risk of false-positive identification. This paper proposed a hybrid fraud detection framework when only a small set of labelled (fraud/non-fraud) data is available, and human input is required in the final decision-making step. This framework used a combination of unsupervised and supervised machine learning, red-flag prioritization, and an augmented AI approach containing a human-in-the-loop process. It also proposed a weighted center based on the feature importance scores for the fraud risk cluster and used it in the red-flag prioritization process. Finally, the approach is illustrated using a case study to identify fraudulent users in an invoicing platform. Our hybrid framework showed promising results in identifying fraudulent users and improving human performance when human input is required to make the final decision.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-023-05223-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Computer Science ; Flags ; Fraud ; Fraud prevention ; Human performance ; Invoicing ; Machine learning ; Machines ; Manufacturing ; Mechanical Engineering ; Processes ; Supervised learning</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2024, Vol.54 (2), p.1297-1310</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-3a28332c269b7b2e78cb434910ad8ea9822286332c12ed62554ac26699d3636e3</cites><orcidid>0000-0002-3925-9621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-023-05223-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-023-05223-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Wahid, Dewan F.</creatorcontrib><creatorcontrib>Hassini, Elkafi</creatorcontrib><title>An augmented AI-based hybrid fraud detection framework for invoicing platforms</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies due to the limitation of time and other resources. A fully automated fraud detection model can be useful, but it creates a risk of false-positive identification. This paper proposed a hybrid fraud detection framework when only a small set of labelled (fraud/non-fraud) data is available, and human input is required in the final decision-making step. This framework used a combination of unsupervised and supervised machine learning, red-flag prioritization, and an augmented AI approach containing a human-in-the-loop process. It also proposed a weighted center based on the feature importance scores for the fraud risk cluster and used it in the red-flag prioritization process. Finally, the approach is illustrated using a case study to identify fraudulent users in an invoicing platform. Our hybrid framework showed promising results in identifying fraudulent users and improving human performance when human input is required to make the final decision.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Flags</subject><subject>Fraud</subject><subject>Fraud prevention</subject><subject>Human performance</subject><subject>Invoicing</subject><subject>Machine learning</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Processes</subject><subject>Supervised learning</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LwzAYxoMoOKf_gKeA52jyJk2a4xh-DIZeFLyFtE1n55rOpNXtvzezgjcv7xe_53nhQeiS0WtGqbqJjIpcEwqc0AxS3R2hCcsUJ0podYwmVIMgUurXU3QW45pSyjllE_Q489gOq9b53lV4tiCFjWl42xehqXAd7FDhyvWu7JvOH_bWfXXhHdddwI3_7Jqy8Su83dg-Xdp4jk5qu4nu4rdP0cvd7fP8gSyf7hfz2ZKUoGhPuIWccyhB6kIV4FReFoILzaitcmd1DgC5PBAMXCUhy4RNsNS64pJLx6foavTdhu5jcLE3624IPr00oEEpwVJLFIxUGboYg6vNNjStDXvDqDnkZsbcTMrN_ORmdknER1FMsF-58Gf9j-oby91wBw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wahid, Dewan F.</creator><creator>Hassini, Elkafi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3925-9621</orcidid></search><sort><creationdate>2024</creationdate><title>An augmented AI-based hybrid fraud detection framework for invoicing platforms</title><author>Wahid, Dewan F. ; Hassini, Elkafi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-3a28332c269b7b2e78cb434910ad8ea9822286332c12ed62554ac26699d3636e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Flags</topic><topic>Fraud</topic><topic>Fraud prevention</topic><topic>Human performance</topic><topic>Invoicing</topic><topic>Machine learning</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Processes</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahid, Dewan F.</creatorcontrib><creatorcontrib>Hassini, Elkafi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahid, Dewan F.</au><au>Hassini, Elkafi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An augmented AI-based hybrid fraud detection framework for invoicing platforms</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2024</date><risdate>2024</risdate><volume>54</volume><issue>2</issue><spage>1297</spage><epage>1310</epage><pages>1297-1310</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>In this era of e-commerce, many companies are moving towards subscription-based invoicing platforms to maintain their electronic invoices. Unfortunately, fraudsters are using these platforms for different types of malicious activities. Identifying fraudsters is often challenging for many companies due to the limitation of time and other resources. A fully automated fraud detection model can be useful, but it creates a risk of false-positive identification. This paper proposed a hybrid fraud detection framework when only a small set of labelled (fraud/non-fraud) data is available, and human input is required in the final decision-making step. This framework used a combination of unsupervised and supervised machine learning, red-flag prioritization, and an augmented AI approach containing a human-in-the-loop process. It also proposed a weighted center based on the feature importance scores for the fraud risk cluster and used it in the red-flag prioritization process. Finally, the approach is illustrated using a case study to identify fraudulent users in an invoicing platform. Our hybrid framework showed promising results in identifying fraudulent users and improving human performance when human input is required to make the final decision.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-023-05223-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3925-9621</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2024, Vol.54 (2), p.1297-1310 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2927741292 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Computer Science Flags Fraud Fraud prevention Human performance Invoicing Machine learning Machines Manufacturing Mechanical Engineering Processes Supervised learning |
title | An augmented AI-based hybrid fraud detection framework for invoicing platforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20augmented%20AI-based%20hybrid%20fraud%20detection%20framework%20for%20invoicing%20platforms&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Wahid,%20Dewan%20F.&rft.date=2024&rft.volume=54&rft.issue=2&rft.spage=1297&rft.epage=1310&rft.pages=1297-1310&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-023-05223-x&rft_dat=%3Cproquest_cross%3E2927741292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927741292&rft_id=info:pmid/&rfr_iscdi=true |