Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies

High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the obs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:GPS solutions 2024-04, Vol.28 (2), p.73, Article 73
Hauptverfasser: Steindorfer, Michael A., Koidl, Franz, Kirchner, Georg, Wang, Peiyuan, Dilssner, Florian, Schoenemann, Erik, Strangfeld, Aaron, Gonzalez, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 73
container_title GPS solutions
container_volume 28
creator Steindorfer, Michael A.
Koidl, Franz
Kirchner, Georg
Wang, Peiyuan
Dilssner, Florian
Schoenemann, Erik
Strangfeld, Aaron
Gonzalez, Francisco
description High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the observing station in such a way that multiple retroreflectors appear at the same range, forming regions of increased data density—separated by a few millimeters. First, measurements to a spare IOV-type retroreflector mounted on an astronomical mount at a remote location 32 km away from the Graz laser ranging station are performed. In addition, more than 100 symmetry passes to Galileo satellites in orbit have been measured. Two novel techniques are described to form laser ranging normal points with improved precision compared to traditional methods. An individual normal point can be formed for each set of retroreflectors at a constant range. The central normal point was shown to be up to 4 mm more accurate when compared with a precise orbit solution. Similar offsets are determined by applying a pattern correlation technique comparing simulated with measured data, and the first method is verified. Irregular reflection patterns of Galileo FOC panels indicate accumulated far-field diffraction patterns resulting from non-uniform retroreflector distributions.
doi_str_mv 10.1007/s10291-024-01615-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927739718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927739718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-5641b5e307af83d16393439d2f99d167753b868cb0da0b649c0c8c5e03bcbdc93</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0z-JN1l0FRY8qOeQpmnJ0ia7SVbYb29rFW-eZh783pvhIXRN4ZYCVHeRQiYogSwnQEtaEHGCFrTIKKGcl6fjDhxIwSo4RxcxbgEyECJfoP2bSqbvbTK4V9EEHJTrrOtw8nitetsbj-MvEu9xPA6DSeGItXeNTda7iJVrsB12wX-aBjsfBtXjnbcu4XYSE4RjCmNKZ028RGet6qO5-plL9PH0-L56JpvX9cvqYUM0o3kiRZnTujAMKtVy1tCSCZYz0WStEKOqqoLVvOS6hkZBXeZCg-a6MMBqXTdasCW6mXPHx_YHE5Pc-kNw40mZiayqmKgoH6lspnTwMQbTyl2wgwpHSUFO1cq5WjlWK7-rlVM0m01xhF1nwl_0P64vfhN-VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927739718</pqid></control><display><type>article</type><title>Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies</title><source>SpringerLink (Online service)</source><creator>Steindorfer, Michael A. ; Koidl, Franz ; Kirchner, Georg ; Wang, Peiyuan ; Dilssner, Florian ; Schoenemann, Erik ; Strangfeld, Aaron ; Gonzalez, Francisco</creator><creatorcontrib>Steindorfer, Michael A. ; Koidl, Franz ; Kirchner, Georg ; Wang, Peiyuan ; Dilssner, Florian ; Schoenemann, Erik ; Strangfeld, Aaron ; Gonzalez, Francisco</creatorcontrib><description>High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the observing station in such a way that multiple retroreflectors appear at the same range, forming regions of increased data density—separated by a few millimeters. First, measurements to a spare IOV-type retroreflector mounted on an astronomical mount at a remote location 32 km away from the Graz laser ranging station are performed. In addition, more than 100 symmetry passes to Galileo satellites in orbit have been measured. Two novel techniques are described to form laser ranging normal points with improved precision compared to traditional methods. An individual normal point can be formed for each set of retroreflectors at a constant range. The central normal point was shown to be up to 4 mm more accurate when compared with a precise orbit solution. Similar offsets are determined by applying a pattern correlation technique comparing simulated with measured data, and the first method is verified. Irregular reflection patterns of Galileo FOC panels indicate accumulated far-field diffraction patterns resulting from non-uniform retroreflector distributions.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-024-01615-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atmospheric Sciences ; Automotive Engineering ; Diffraction patterns ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Far fields ; Geophysics/Geodesy ; Incidence angle ; Laser beams ; Lasers ; Original Article ; Panels ; Retroreflectors ; Satellite laser ranging ; Satellite Orbit Determination ; Satellites ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Symmetry</subject><ispartof>GPS solutions, 2024-04, Vol.28 (2), p.73, Article 73</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-5641b5e307af83d16393439d2f99d167753b868cb0da0b649c0c8c5e03bcbdc93</cites><orcidid>0000-0001-8857-6845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-024-01615-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-024-01615-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Steindorfer, Michael A.</creatorcontrib><creatorcontrib>Koidl, Franz</creatorcontrib><creatorcontrib>Kirchner, Georg</creatorcontrib><creatorcontrib>Wang, Peiyuan</creatorcontrib><creatorcontrib>Dilssner, Florian</creatorcontrib><creatorcontrib>Schoenemann, Erik</creatorcontrib><creatorcontrib>Strangfeld, Aaron</creatorcontrib><creatorcontrib>Gonzalez, Francisco</creatorcontrib><title>Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the observing station in such a way that multiple retroreflectors appear at the same range, forming regions of increased data density—separated by a few millimeters. First, measurements to a spare IOV-type retroreflector mounted on an astronomical mount at a remote location 32 km away from the Graz laser ranging station are performed. In addition, more than 100 symmetry passes to Galileo satellites in orbit have been measured. Two novel techniques are described to form laser ranging normal points with improved precision compared to traditional methods. An individual normal point can be formed for each set of retroreflectors at a constant range. The central normal point was shown to be up to 4 mm more accurate when compared with a precise orbit solution. Similar offsets are determined by applying a pattern correlation technique comparing simulated with measured data, and the first method is verified. Irregular reflection patterns of Galileo FOC panels indicate accumulated far-field diffraction patterns resulting from non-uniform retroreflector distributions.</description><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Diffraction patterns</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Far fields</subject><subject>Geophysics/Geodesy</subject><subject>Incidence angle</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Original Article</subject><subject>Panels</subject><subject>Retroreflectors</subject><subject>Satellite laser ranging</subject><subject>Satellite Orbit Determination</subject><subject>Satellites</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Symmetry</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0z-JN1l0FRY8qOeQpmnJ0ia7SVbYb29rFW-eZh783pvhIXRN4ZYCVHeRQiYogSwnQEtaEHGCFrTIKKGcl6fjDhxIwSo4RxcxbgEyECJfoP2bSqbvbTK4V9EEHJTrrOtw8nitetsbj-MvEu9xPA6DSeGItXeNTda7iJVrsB12wX-aBjsfBtXjnbcu4XYSE4RjCmNKZ028RGet6qO5-plL9PH0-L56JpvX9cvqYUM0o3kiRZnTujAMKtVy1tCSCZYz0WStEKOqqoLVvOS6hkZBXeZCg-a6MMBqXTdasCW6mXPHx_YHE5Pc-kNw40mZiayqmKgoH6lspnTwMQbTyl2wgwpHSUFO1cq5WjlWK7-rlVM0m01xhF1nwl_0P64vfhN-VA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Steindorfer, Michael A.</creator><creator>Koidl, Franz</creator><creator>Kirchner, Georg</creator><creator>Wang, Peiyuan</creator><creator>Dilssner, Florian</creator><creator>Schoenemann, Erik</creator><creator>Strangfeld, Aaron</creator><creator>Gonzalez, Francisco</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8857-6845</orcidid></search><sort><creationdate>20240401</creationdate><title>Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies</title><author>Steindorfer, Michael A. ; Koidl, Franz ; Kirchner, Georg ; Wang, Peiyuan ; Dilssner, Florian ; Schoenemann, Erik ; Strangfeld, Aaron ; Gonzalez, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-5641b5e307af83d16393439d2f99d167753b868cb0da0b649c0c8c5e03bcbdc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Diffraction patterns</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Far fields</topic><topic>Geophysics/Geodesy</topic><topic>Incidence angle</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Original Article</topic><topic>Panels</topic><topic>Retroreflectors</topic><topic>Satellite laser ranging</topic><topic>Satellite Orbit Determination</topic><topic>Satellites</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steindorfer, Michael A.</creatorcontrib><creatorcontrib>Koidl, Franz</creatorcontrib><creatorcontrib>Kirchner, Georg</creatorcontrib><creatorcontrib>Wang, Peiyuan</creatorcontrib><creatorcontrib>Dilssner, Florian</creatorcontrib><creatorcontrib>Schoenemann, Erik</creatorcontrib><creatorcontrib>Strangfeld, Aaron</creatorcontrib><creatorcontrib>Gonzalez, Francisco</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steindorfer, Michael A.</au><au>Koidl, Franz</au><au>Kirchner, Georg</au><au>Wang, Peiyuan</au><au>Dilssner, Florian</au><au>Schoenemann, Erik</au><au>Strangfeld, Aaron</au><au>Gonzalez, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>73</spage><pages>73-</pages><artnum>73</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the observing station in such a way that multiple retroreflectors appear at the same range, forming regions of increased data density—separated by a few millimeters. First, measurements to a spare IOV-type retroreflector mounted on an astronomical mount at a remote location 32 km away from the Graz laser ranging station are performed. In addition, more than 100 symmetry passes to Galileo satellites in orbit have been measured. Two novel techniques are described to form laser ranging normal points with improved precision compared to traditional methods. An individual normal point can be formed for each set of retroreflectors at a constant range. The central normal point was shown to be up to 4 mm more accurate when compared with a precise orbit solution. Similar offsets are determined by applying a pattern correlation technique comparing simulated with measured data, and the first method is verified. Irregular reflection patterns of Galileo FOC panels indicate accumulated far-field diffraction patterns resulting from non-uniform retroreflector distributions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-024-01615-9</doi><orcidid>https://orcid.org/0000-0001-8857-6845</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1080-5370
ispartof GPS solutions, 2024-04, Vol.28 (2), p.73, Article 73
issn 1080-5370
1521-1886
language eng
recordid cdi_proquest_journals_2927739718
source SpringerLink (Online service)
subjects Atmospheric Sciences
Automotive Engineering
Diffraction patterns
Earth and Environmental Science
Earth Sciences
Electrical Engineering
Far fields
Geophysics/Geodesy
Incidence angle
Laser beams
Lasers
Original Article
Panels
Retroreflectors
Satellite laser ranging
Satellite Orbit Determination
Satellites
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Symmetry
title Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite%20laser%20ranging%20to%20Galileo%20satellites:%20symmetry%20conditions%20and%20improved%20normal%20point%20formation%20strategies&rft.jtitle=GPS%20solutions&rft.au=Steindorfer,%20Michael%20A.&rft.date=2024-04-01&rft.volume=28&rft.issue=2&rft.spage=73&rft.pages=73-&rft.artnum=73&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-024-01615-9&rft_dat=%3Cproquest_cross%3E2927739718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927739718&rft_id=info:pmid/&rfr_iscdi=true