Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies
High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the obs...
Gespeichert in:
Veröffentlicht in: | GPS solutions 2024-04, Vol.28 (2), p.73, Article 73 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 73 |
container_title | GPS solutions |
container_volume | 28 |
creator | Steindorfer, Michael A. Koidl, Franz Kirchner, Georg Wang, Peiyuan Dilssner, Florian Schoenemann, Erik Strangfeld, Aaron Gonzalez, Francisco |
description | High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the observing station in such a way that multiple retroreflectors appear at the same range, forming regions of increased data density—separated by a few millimeters. First, measurements to a spare IOV-type retroreflector mounted on an astronomical mount at a remote location 32 km away from the Graz laser ranging station are performed. In addition, more than 100 symmetry passes to Galileo satellites in orbit have been measured. Two novel techniques are described to form laser ranging normal points with improved precision compared to traditional methods. An individual normal point can be formed for each set of retroreflectors at a constant range. The central normal point was shown to be up to 4 mm more accurate when compared with a precise orbit solution. Similar offsets are determined by applying a pattern correlation technique comparing simulated with measured data, and the first method is verified. Irregular reflection patterns of Galileo FOC panels indicate accumulated far-field diffraction patterns resulting from non-uniform retroreflector distributions. |
doi_str_mv | 10.1007/s10291-024-01615-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927739718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927739718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-5641b5e307af83d16393439d2f99d167753b868cb0da0b649c0c8c5e03bcbdc93</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0z-JN1l0FRY8qOeQpmnJ0ia7SVbYb29rFW-eZh783pvhIXRN4ZYCVHeRQiYogSwnQEtaEHGCFrTIKKGcl6fjDhxIwSo4RxcxbgEyECJfoP2bSqbvbTK4V9EEHJTrrOtw8nitetsbj-MvEu9xPA6DSeGItXeNTda7iJVrsB12wX-aBjsfBtXjnbcu4XYSE4RjCmNKZ028RGet6qO5-plL9PH0-L56JpvX9cvqYUM0o3kiRZnTujAMKtVy1tCSCZYz0WStEKOqqoLVvOS6hkZBXeZCg-a6MMBqXTdasCW6mXPHx_YHE5Pc-kNw40mZiayqmKgoH6lspnTwMQbTyl2wgwpHSUFO1cq5WjlWK7-rlVM0m01xhF1nwl_0P64vfhN-VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927739718</pqid></control><display><type>article</type><title>Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies</title><source>SpringerLink (Online service)</source><creator>Steindorfer, Michael A. ; Koidl, Franz ; Kirchner, Georg ; Wang, Peiyuan ; Dilssner, Florian ; Schoenemann, Erik ; Strangfeld, Aaron ; Gonzalez, Francisco</creator><creatorcontrib>Steindorfer, Michael A. ; Koidl, Franz ; Kirchner, Georg ; Wang, Peiyuan ; Dilssner, Florian ; Schoenemann, Erik ; Strangfeld, Aaron ; Gonzalez, Francisco</creatorcontrib><description>High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the observing station in such a way that multiple retroreflectors appear at the same range, forming regions of increased data density—separated by a few millimeters. First, measurements to a spare IOV-type retroreflector mounted on an astronomical mount at a remote location 32 km away from the Graz laser ranging station are performed. In addition, more than 100 symmetry passes to Galileo satellites in orbit have been measured. Two novel techniques are described to form laser ranging normal points with improved precision compared to traditional methods. An individual normal point can be formed for each set of retroreflectors at a constant range. The central normal point was shown to be up to 4 mm more accurate when compared with a precise orbit solution. Similar offsets are determined by applying a pattern correlation technique comparing simulated with measured data, and the first method is verified. Irregular reflection patterns of Galileo FOC panels indicate accumulated far-field diffraction patterns resulting from non-uniform retroreflector distributions.</description><identifier>ISSN: 1080-5370</identifier><identifier>EISSN: 1521-1886</identifier><identifier>DOI: 10.1007/s10291-024-01615-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atmospheric Sciences ; Automotive Engineering ; Diffraction patterns ; Earth and Environmental Science ; Earth Sciences ; Electrical Engineering ; Far fields ; Geophysics/Geodesy ; Incidence angle ; Laser beams ; Lasers ; Original Article ; Panels ; Retroreflectors ; Satellite laser ranging ; Satellite Orbit Determination ; Satellites ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Symmetry</subject><ispartof>GPS solutions, 2024-04, Vol.28 (2), p.73, Article 73</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-5641b5e307af83d16393439d2f99d167753b868cb0da0b649c0c8c5e03bcbdc93</cites><orcidid>0000-0001-8857-6845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10291-024-01615-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10291-024-01615-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Steindorfer, Michael A.</creatorcontrib><creatorcontrib>Koidl, Franz</creatorcontrib><creatorcontrib>Kirchner, Georg</creatorcontrib><creatorcontrib>Wang, Peiyuan</creatorcontrib><creatorcontrib>Dilssner, Florian</creatorcontrib><creatorcontrib>Schoenemann, Erik</creatorcontrib><creatorcontrib>Strangfeld, Aaron</creatorcontrib><creatorcontrib>Gonzalez, Francisco</creatorcontrib><title>Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies</title><title>GPS solutions</title><addtitle>GPS Solut</addtitle><description>High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the observing station in such a way that multiple retroreflectors appear at the same range, forming regions of increased data density—separated by a few millimeters. First, measurements to a spare IOV-type retroreflector mounted on an astronomical mount at a remote location 32 km away from the Graz laser ranging station are performed. In addition, more than 100 symmetry passes to Galileo satellites in orbit have been measured. Two novel techniques are described to form laser ranging normal points with improved precision compared to traditional methods. An individual normal point can be formed for each set of retroreflectors at a constant range. The central normal point was shown to be up to 4 mm more accurate when compared with a precise orbit solution. Similar offsets are determined by applying a pattern correlation technique comparing simulated with measured data, and the first method is verified. Irregular reflection patterns of Galileo FOC panels indicate accumulated far-field diffraction patterns resulting from non-uniform retroreflector distributions.</description><subject>Atmospheric Sciences</subject><subject>Automotive Engineering</subject><subject>Diffraction patterns</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical Engineering</subject><subject>Far fields</subject><subject>Geophysics/Geodesy</subject><subject>Incidence angle</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Original Article</subject><subject>Panels</subject><subject>Retroreflectors</subject><subject>Satellite laser ranging</subject><subject>Satellite Orbit Determination</subject><subject>Satellites</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Symmetry</subject><issn>1080-5370</issn><issn>1521-1886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LxDAQxYMouK5-AU8Bz9FJ0z-JN1l0FRY8qOeQpmnJ0ia7SVbYb29rFW-eZh783pvhIXRN4ZYCVHeRQiYogSwnQEtaEHGCFrTIKKGcl6fjDhxIwSo4RxcxbgEyECJfoP2bSqbvbTK4V9EEHJTrrOtw8nitetsbj-MvEu9xPA6DSeGItXeNTda7iJVrsB12wX-aBjsfBtXjnbcu4XYSE4RjCmNKZ028RGet6qO5-plL9PH0-L56JpvX9cvqYUM0o3kiRZnTujAMKtVy1tCSCZYz0WStEKOqqoLVvOS6hkZBXeZCg-a6MMBqXTdasCW6mXPHx_YHE5Pc-kNw40mZiayqmKgoH6lspnTwMQbTyl2wgwpHSUFO1cq5WjlWK7-rlVM0m01xhF1nwl_0P64vfhN-VA</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Steindorfer, Michael A.</creator><creator>Koidl, Franz</creator><creator>Kirchner, Georg</creator><creator>Wang, Peiyuan</creator><creator>Dilssner, Florian</creator><creator>Schoenemann, Erik</creator><creator>Strangfeld, Aaron</creator><creator>Gonzalez, Francisco</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8857-6845</orcidid></search><sort><creationdate>20240401</creationdate><title>Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies</title><author>Steindorfer, Michael A. ; Koidl, Franz ; Kirchner, Georg ; Wang, Peiyuan ; Dilssner, Florian ; Schoenemann, Erik ; Strangfeld, Aaron ; Gonzalez, Francisco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-5641b5e307af83d16393439d2f99d167753b868cb0da0b649c0c8c5e03bcbdc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric Sciences</topic><topic>Automotive Engineering</topic><topic>Diffraction patterns</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical Engineering</topic><topic>Far fields</topic><topic>Geophysics/Geodesy</topic><topic>Incidence angle</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Original Article</topic><topic>Panels</topic><topic>Retroreflectors</topic><topic>Satellite laser ranging</topic><topic>Satellite Orbit Determination</topic><topic>Satellites</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steindorfer, Michael A.</creatorcontrib><creatorcontrib>Koidl, Franz</creatorcontrib><creatorcontrib>Kirchner, Georg</creatorcontrib><creatorcontrib>Wang, Peiyuan</creatorcontrib><creatorcontrib>Dilssner, Florian</creatorcontrib><creatorcontrib>Schoenemann, Erik</creatorcontrib><creatorcontrib>Strangfeld, Aaron</creatorcontrib><creatorcontrib>Gonzalez, Francisco</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>GPS solutions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steindorfer, Michael A.</au><au>Koidl, Franz</au><au>Kirchner, Georg</au><au>Wang, Peiyuan</au><au>Dilssner, Florian</au><au>Schoenemann, Erik</au><au>Strangfeld, Aaron</au><au>Gonzalez, Francisco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies</atitle><jtitle>GPS solutions</jtitle><stitle>GPS Solut</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>28</volume><issue>2</issue><spage>73</spage><pages>73-</pages><artnum>73</artnum><issn>1080-5370</issn><eissn>1521-1886</eissn><abstract>High-precision satellite laser ranging measurements to Galileo retroreflector panels are analyzed to determine the angle of incidence of the laser beam based on specific orientations of the panel with respect to the observing station. During the measurements, the panel aligns with respect to the observing station in such a way that multiple retroreflectors appear at the same range, forming regions of increased data density—separated by a few millimeters. First, measurements to a spare IOV-type retroreflector mounted on an astronomical mount at a remote location 32 km away from the Graz laser ranging station are performed. In addition, more than 100 symmetry passes to Galileo satellites in orbit have been measured. Two novel techniques are described to form laser ranging normal points with improved precision compared to traditional methods. An individual normal point can be formed for each set of retroreflectors at a constant range. The central normal point was shown to be up to 4 mm more accurate when compared with a precise orbit solution. Similar offsets are determined by applying a pattern correlation technique comparing simulated with measured data, and the first method is verified. Irregular reflection patterns of Galileo FOC panels indicate accumulated far-field diffraction patterns resulting from non-uniform retroreflector distributions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10291-024-01615-9</doi><orcidid>https://orcid.org/0000-0001-8857-6845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1080-5370 |
ispartof | GPS solutions, 2024-04, Vol.28 (2), p.73, Article 73 |
issn | 1080-5370 1521-1886 |
language | eng |
recordid | cdi_proquest_journals_2927739718 |
source | SpringerLink (Online service) |
subjects | Atmospheric Sciences Automotive Engineering Diffraction patterns Earth and Environmental Science Earth Sciences Electrical Engineering Far fields Geophysics/Geodesy Incidence angle Laser beams Lasers Original Article Panels Retroreflectors Satellite laser ranging Satellite Orbit Determination Satellites Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Symmetry |
title | Satellite laser ranging to Galileo satellites: symmetry conditions and improved normal point formation strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite%20laser%20ranging%20to%20Galileo%20satellites:%20symmetry%20conditions%20and%20improved%20normal%20point%20formation%20strategies&rft.jtitle=GPS%20solutions&rft.au=Steindorfer,%20Michael%20A.&rft.date=2024-04-01&rft.volume=28&rft.issue=2&rft.spage=73&rft.pages=73-&rft.artnum=73&rft.issn=1080-5370&rft.eissn=1521-1886&rft_id=info:doi/10.1007/s10291-024-01615-9&rft_dat=%3Cproquest_cross%3E2927739718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927739718&rft_id=info:pmid/&rfr_iscdi=true |