Multinomial mixture for spatial data

The purpose of this paper is to extend standard finite mixture models in the context of multinomial mixtures for spatial data, in order to cluster geographical units according to demographic characteristics. The spatial information is incorporated on the model through the mixing probabilities of eac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Nalpantidi, Anna, Karlis, Dimitris, Papastamoulis, Panagiotis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nalpantidi, Anna
Karlis, Dimitris
Papastamoulis, Panagiotis
description The purpose of this paper is to extend standard finite mixture models in the context of multinomial mixtures for spatial data, in order to cluster geographical units according to demographic characteristics. The spatial information is incorporated on the model through the mixing probabilities of each component. To be more specific, a Gibbs distribution is assumed for prior probabilities. In this way, assignment of each observation is affected by neighbors' cluster and spatial dependence is included in the model. Estimation is based on a modified EM algorithm which is enriched by an extra, initial step for approximating the field. The simulated field algorithm is used in this initial step. The presented model will be used for clustering municipalities of Attica with respect to age distribution of residents.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2927724889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927724889</sourcerecordid><originalsourceid>FETCH-proquest_journals_29277248893</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8S3NKcnMy8_NTMxRyM2sKCktSlVIyy9SKC5ILAGJpSSWJPIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRpZG5uZGJhYWlMXGqAPP5LwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927724889</pqid></control><display><type>article</type><title>Multinomial mixture for spatial data</title><source>Freely Accessible Journals</source><creator>Nalpantidi, Anna ; Karlis, Dimitris ; Papastamoulis, Panagiotis</creator><creatorcontrib>Nalpantidi, Anna ; Karlis, Dimitris ; Papastamoulis, Panagiotis</creatorcontrib><description>The purpose of this paper is to extend standard finite mixture models in the context of multinomial mixtures for spatial data, in order to cluster geographical units according to demographic characteristics. The spatial information is incorporated on the model through the mixing probabilities of each component. To be more specific, a Gibbs distribution is assumed for prior probabilities. In this way, assignment of each observation is affected by neighbors' cluster and spatial dependence is included in the model. Estimation is based on a modified EM algorithm which is enriched by an extra, initial step for approximating the field. The simulated field algorithm is used in this initial step. The presented model will be used for clustering municipalities of Attica with respect to age distribution of residents.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Clustering ; Probabilistic models ; Spatial data</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Nalpantidi, Anna</creatorcontrib><creatorcontrib>Karlis, Dimitris</creatorcontrib><creatorcontrib>Papastamoulis, Panagiotis</creatorcontrib><title>Multinomial mixture for spatial data</title><title>arXiv.org</title><description>The purpose of this paper is to extend standard finite mixture models in the context of multinomial mixtures for spatial data, in order to cluster geographical units according to demographic characteristics. The spatial information is incorporated on the model through the mixing probabilities of each component. To be more specific, a Gibbs distribution is assumed for prior probabilities. In this way, assignment of each observation is affected by neighbors' cluster and spatial dependence is included in the model. Estimation is based on a modified EM algorithm which is enriched by an extra, initial step for approximating the field. The simulated field algorithm is used in this initial step. The presented model will be used for clustering municipalities of Attica with respect to age distribution of residents.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Probabilistic models</subject><subject>Spatial data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8S3NKcnMy8_NTMxRyM2sKCktSlVIyy9SKC5ILAGJpSSWJPIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRpZG5uZGJhYWlMXGqAPP5LwU</recordid><startdate>20240215</startdate><enddate>20240215</enddate><creator>Nalpantidi, Anna</creator><creator>Karlis, Dimitris</creator><creator>Papastamoulis, Panagiotis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240215</creationdate><title>Multinomial mixture for spatial data</title><author>Nalpantidi, Anna ; Karlis, Dimitris ; Papastamoulis, Panagiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29277248893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Probabilistic models</topic><topic>Spatial data</topic><toplevel>online_resources</toplevel><creatorcontrib>Nalpantidi, Anna</creatorcontrib><creatorcontrib>Karlis, Dimitris</creatorcontrib><creatorcontrib>Papastamoulis, Panagiotis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nalpantidi, Anna</au><au>Karlis, Dimitris</au><au>Papastamoulis, Panagiotis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multinomial mixture for spatial data</atitle><jtitle>arXiv.org</jtitle><date>2024-02-15</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>The purpose of this paper is to extend standard finite mixture models in the context of multinomial mixtures for spatial data, in order to cluster geographical units according to demographic characteristics. The spatial information is incorporated on the model through the mixing probabilities of each component. To be more specific, a Gibbs distribution is assumed for prior probabilities. In this way, assignment of each observation is affected by neighbors' cluster and spatial dependence is included in the model. Estimation is based on a modified EM algorithm which is enriched by an extra, initial step for approximating the field. The simulated field algorithm is used in this initial step. The presented model will be used for clustering municipalities of Attica with respect to age distribution of residents.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2927724889
source Freely Accessible Journals
subjects Algorithms
Clustering
Probabilistic models
Spatial data
title Multinomial mixture for spatial data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multinomial%20mixture%20for%20spatial%20data&rft.jtitle=arXiv.org&rft.au=Nalpantidi,%20Anna&rft.date=2024-02-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2927724889%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927724889&rft_id=info:pmid/&rfr_iscdi=true