Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model

Generative adversarial networks (GANs) generate photorealistic faces that are often indistinguishable by humans from real faces. While biases in machine learning models are often assumed to be due to biases in training data, we find pathological internal color and luminance biases in the discriminat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Grissom, Alvin, Lei, Ryan F, Gusdorff, Matt, Jeova Farias Sales Rocha Neto, Bailey, Lin, Trotter, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Grissom, Alvin
Lei, Ryan F
Gusdorff, Matt
Jeova Farias Sales Rocha Neto
Bailey, Lin
Trotter, Ryan
description Generative adversarial networks (GANs) generate photorealistic faces that are often indistinguishable by humans from real faces. While biases in machine learning models are often assumed to be due to biases in training data, we find pathological internal color and luminance biases in the discriminator of a pre-trained StyleGAN3-r model that are not explicable by the training data. We also find that the discriminator systematically stratifies scores by both image- and face-level qualities and that this disproportionately affects images across gender, race, and other categories. We examine axes common in research on stereotyping in social psychology.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2927724338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2927724338</sourcerecordid><originalsourceid>FETCH-proquest_journals_29277243383</originalsourceid><addsrcrecordid>eNqNjM0OATEURhuJhOAdbmItGS0Gu_G_IRL2k5uZi0u1tB0_b28kHsDqLL7znYqoS6W6nWFPyppoeX-OokgOYtnvq7q4zV94ZcPmCFsMJ6vtkTPUMGH0wAYQlmTIYeAHQZI_yHl0XAobCk_rLjBjnzkuExisG0MCU_QEu1Dkb7Df_y68NS2TjYK1zUk3RfWA2lPrx4ZoL-b76apzc_ZekA_p2RbOlFMqRzKOZU-pofrP-gA7ZUl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927724338</pqid></control><display><type>article</type><title>Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model</title><source>Free E- Journals</source><creator>Grissom, Alvin ; Lei, Ryan F ; Gusdorff, Matt ; Jeova Farias Sales Rocha Neto ; Bailey, Lin ; Trotter, Ryan</creator><creatorcontrib>Grissom, Alvin ; Lei, Ryan F ; Gusdorff, Matt ; Jeova Farias Sales Rocha Neto ; Bailey, Lin ; Trotter, Ryan</creatorcontrib><description>Generative adversarial networks (GANs) generate photorealistic faces that are often indistinguishable by humans from real faces. While biases in machine learning models are often assumed to be due to biases in training data, we find pathological internal color and luminance biases in the discriminator of a pre-trained StyleGAN3-r model that are not explicable by the training data. We also find that the discriminator systematically stratifies scores by both image- and face-level qualities and that this disproportionately affects images across gender, race, and other categories. We examine axes common in research on stereotyping in social psychology.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bias ; Discriminators ; Generative adversarial networks ; Race</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Grissom, Alvin</creatorcontrib><creatorcontrib>Lei, Ryan F</creatorcontrib><creatorcontrib>Gusdorff, Matt</creatorcontrib><creatorcontrib>Jeova Farias Sales Rocha Neto</creatorcontrib><creatorcontrib>Bailey, Lin</creatorcontrib><creatorcontrib>Trotter, Ryan</creatorcontrib><title>Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model</title><title>arXiv.org</title><description>Generative adversarial networks (GANs) generate photorealistic faces that are often indistinguishable by humans from real faces. While biases in machine learning models are often assumed to be due to biases in training data, we find pathological internal color and luminance biases in the discriminator of a pre-trained StyleGAN3-r model that are not explicable by the training data. We also find that the discriminator systematically stratifies scores by both image- and face-level qualities and that this disproportionately affects images across gender, race, and other categories. We examine axes common in research on stereotyping in social psychology.</description><subject>Bias</subject><subject>Discriminators</subject><subject>Generative adversarial networks</subject><subject>Race</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjM0OATEURhuJhOAdbmItGS0Gu_G_IRL2k5uZi0u1tB0_b28kHsDqLL7znYqoS6W6nWFPyppoeX-OokgOYtnvq7q4zV94ZcPmCFsMJ6vtkTPUMGH0wAYQlmTIYeAHQZI_yHl0XAobCk_rLjBjnzkuExisG0MCU_QEu1Dkb7Df_y68NS2TjYK1zUk3RfWA2lPrx4ZoL-b76apzc_ZekA_p2RbOlFMqRzKOZU-pofrP-gA7ZUl0</recordid><startdate>20240828</startdate><enddate>20240828</enddate><creator>Grissom, Alvin</creator><creator>Lei, Ryan F</creator><creator>Gusdorff, Matt</creator><creator>Jeova Farias Sales Rocha Neto</creator><creator>Bailey, Lin</creator><creator>Trotter, Ryan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240828</creationdate><title>Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model</title><author>Grissom, Alvin ; Lei, Ryan F ; Gusdorff, Matt ; Jeova Farias Sales Rocha Neto ; Bailey, Lin ; Trotter, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29277243383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Discriminators</topic><topic>Generative adversarial networks</topic><topic>Race</topic><toplevel>online_resources</toplevel><creatorcontrib>Grissom, Alvin</creatorcontrib><creatorcontrib>Lei, Ryan F</creatorcontrib><creatorcontrib>Gusdorff, Matt</creatorcontrib><creatorcontrib>Jeova Farias Sales Rocha Neto</creatorcontrib><creatorcontrib>Bailey, Lin</creatorcontrib><creatorcontrib>Trotter, Ryan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grissom, Alvin</au><au>Lei, Ryan F</au><au>Gusdorff, Matt</au><au>Jeova Farias Sales Rocha Neto</au><au>Bailey, Lin</au><au>Trotter, Ryan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model</atitle><jtitle>arXiv.org</jtitle><date>2024-08-28</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Generative adversarial networks (GANs) generate photorealistic faces that are often indistinguishable by humans from real faces. While biases in machine learning models are often assumed to be due to biases in training data, we find pathological internal color and luminance biases in the discriminator of a pre-trained StyleGAN3-r model that are not explicable by the training data. We also find that the discriminator systematically stratifies scores by both image- and face-level qualities and that this disproportionately affects images across gender, race, and other categories. We examine axes common in research on stereotyping in social psychology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2927724338
source Free E- Journals
subjects Bias
Discriminators
Generative adversarial networks
Race
title Examining Pathological Bias in a Generative Adversarial Network Discriminator: A Case Study on a StyleGAN3 Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A48%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Examining%20Pathological%20Bias%20in%20a%20Generative%20Adversarial%20Network%20Discriminator:%20A%20Case%20Study%20on%20a%20StyleGAN3%20Model&rft.jtitle=arXiv.org&rft.au=Grissom,%20Alvin&rft.date=2024-08-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2927724338%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927724338&rft_id=info:pmid/&rfr_iscdi=true