Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy

The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2023, Vol.57 (1), p.1-10
Hauptverfasser: Volkov, R. L., Borgardt, N. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 1
container_start_page 1
container_title Semiconductors (Woodbury, N.Y.)
container_volume 57
creator Volkov, R. L.
Borgardt, N. I.
description The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples consisting of individual crystallites. In this work, we investigate a multilayer heterocomposite, which is a phase-shift photomask consisting of layers of nanoscale thickness on the surface of a glass substrate. Focused-ion-beam methods are used to study a thin foil of cross and longitudinal sections. To identify the structure and determine the composition of the layers, the methods of transmission electron microscopy and energy-dispersive X-ray microanalysis are used. The analysis of cross-sectional foils prepared using standard approaches allows visualization, thickness measurements, and determination of the layer compositions. It is shown that on the SiO 2 substrate an amorphous layer of Mo 0.06 Si 0.31 N 0.63 93 nm thick is formed, which is successively coated with polycrystalline layers of Cr 0.56 N 0.44 , Cr 0.74 C 0.06 N 0.2 , and Cr 0.4 N 0.26 O 0.3 with thicknesses of 22, 37, and 8 nm, respectively. A thin foil with a planar cross-section, prepared at a slight inclination to the surface of the photomask, makes it possible to form sections of all layers with dimensions sufficient for their study by electron microdiffraction. The performed electrographic analysis confirmed the amorphous structure of the substrate and Mo 0.06 Si 0.31 N 0.63 layer, and also showed that polycrystalline layers of Cr 0.56 N 0.44 , Cr 0.74 C 0.06 N 0.2 , and Cr 0.4 N 0.26 O 0.3 formed by crystallites with a cubic lattice and parameters of 3.92, 4.18, and 4.12 Å, respectively.
doi_str_mv 10.1134/S1063782623010098
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2927440461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A782726808</galeid><sourcerecordid>A782726808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-45359d01aea8f333d332a82d358fac465fa61a33e381cd034aff9c2915cfd7423</originalsourceid><addsrcrecordid>eNp1UctOwzAQjBBIlMcHcIvEOWB7ncQ5VhWPSi0cWs6R5ayLq9QutnPI3-OoSBwQ8sG745nZXW-W3VHyQCnwxw0lFdSCVQwIJaQRZ9mMkoYUFa-b8ymuoJjeL7OrEPaEUCpKPsvGZYc2Gm2UjMbZ3Ok8fmK-iX5QcfA4AW_SuqBkj_lKjujDhK2HPpp-SvNXjOidcoejCyZiyIdg7C7femnDwYQw2T71qKJPwdoon8zccbzJLrTsA97-3NfZx_PTdvFarN5flov5qlBA6ljwEsqmI1SiFBoAOgAmBeugFFoqXpVaVlQCIAiqOgJcat0o1tBS6a7mDK6z-5Pv0buvAUNs927wNpVsWcNqzgmvaGI9nFi7NGdrrHbRS5VOhwejnEVtEj5PP1izShCRBPQkmOYJHnV79OYg_dhS0k4raf-sJGnYSRMS1-7Q_7byv-gbbKqPTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927440461</pqid></control><display><type>article</type><title>Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Volkov, R. L. ; Borgardt, N. I.</creator><creatorcontrib>Volkov, R. L. ; Borgardt, N. I.</creatorcontrib><description>The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples consisting of individual crystallites. In this work, we investigate a multilayer heterocomposite, which is a phase-shift photomask consisting of layers of nanoscale thickness on the surface of a glass substrate. Focused-ion-beam methods are used to study a thin foil of cross and longitudinal sections. To identify the structure and determine the composition of the layers, the methods of transmission electron microscopy and energy-dispersive X-ray microanalysis are used. The analysis of cross-sectional foils prepared using standard approaches allows visualization, thickness measurements, and determination of the layer compositions. It is shown that on the SiO 2 substrate an amorphous layer of Mo 0.06 Si 0.31 N 0.63 93 nm thick is formed, which is successively coated with polycrystalline layers of Cr 0.56 N 0.44 , Cr 0.74 C 0.06 N 0.2 , and Cr 0.4 N 0.26 O 0.3 with thicknesses of 22, 37, and 8 nm, respectively. A thin foil with a planar cross-section, prepared at a slight inclination to the surface of the photomask, makes it possible to form sections of all layers with dimensions sufficient for their study by electron microdiffraction. The performed electrographic analysis confirmed the amorphous structure of the substrate and Mo 0.06 Si 0.31 N 0.63 layer, and also showed that polycrystalline layers of Cr 0.56 N 0.44 , Cr 0.74 C 0.06 N 0.2 , and Cr 0.4 N 0.26 O 0.3 formed by crystallites with a cubic lattice and parameters of 3.92, 4.18, and 4.12 Å, respectively.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782623010098</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amorphous materials ; Basic Research ; Composition ; Crystallites ; Cubic lattice ; Electron microscopy ; Electrons ; Foils ; Glass substrates ; High resolution electron microscopy ; Ion beams ; Magnetic Materials ; Magnetism ; Multilayers ; Physics ; Physics and Astronomy ; Polycrystals ; Silicon dioxide ; Thickness measurement ; Transmission electron microscopy</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2023, Vol.57 (1), p.1-10</ispartof><rights>Pleiades Publishing, Ltd. 2023. ISSN 1063-7826, Semiconductors, 2023, Vol. 57, No. 1, pp. 1–10. © Pleiades Publishing, Ltd., 2023. Russian Text © The Author(s), 2023, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Elektronika, 2023, Vol. 28, No. 6, pp. 711–726.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c307t-45359d01aea8f333d332a82d358fac465fa61a33e381cd034aff9c2915cfd7423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782623010098$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782623010098$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Volkov, R. L.</creatorcontrib><creatorcontrib>Borgardt, N. I.</creatorcontrib><title>Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples consisting of individual crystallites. In this work, we investigate a multilayer heterocomposite, which is a phase-shift photomask consisting of layers of nanoscale thickness on the surface of a glass substrate. Focused-ion-beam methods are used to study a thin foil of cross and longitudinal sections. To identify the structure and determine the composition of the layers, the methods of transmission electron microscopy and energy-dispersive X-ray microanalysis are used. The analysis of cross-sectional foils prepared using standard approaches allows visualization, thickness measurements, and determination of the layer compositions. It is shown that on the SiO 2 substrate an amorphous layer of Mo 0.06 Si 0.31 N 0.63 93 nm thick is formed, which is successively coated with polycrystalline layers of Cr 0.56 N 0.44 , Cr 0.74 C 0.06 N 0.2 , and Cr 0.4 N 0.26 O 0.3 with thicknesses of 22, 37, and 8 nm, respectively. A thin foil with a planar cross-section, prepared at a slight inclination to the surface of the photomask, makes it possible to form sections of all layers with dimensions sufficient for their study by electron microdiffraction. The performed electrographic analysis confirmed the amorphous structure of the substrate and Mo 0.06 Si 0.31 N 0.63 layer, and also showed that polycrystalline layers of Cr 0.56 N 0.44 , Cr 0.74 C 0.06 N 0.2 , and Cr 0.4 N 0.26 O 0.3 formed by crystallites with a cubic lattice and parameters of 3.92, 4.18, and 4.12 Å, respectively.</description><subject>Amorphous materials</subject><subject>Basic Research</subject><subject>Composition</subject><subject>Crystallites</subject><subject>Cubic lattice</subject><subject>Electron microscopy</subject><subject>Electrons</subject><subject>Foils</subject><subject>Glass substrates</subject><subject>High resolution electron microscopy</subject><subject>Ion beams</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>Multilayers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polycrystals</subject><subject>Silicon dioxide</subject><subject>Thickness measurement</subject><subject>Transmission electron microscopy</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UctOwzAQjBBIlMcHcIvEOWB7ncQ5VhWPSi0cWs6R5ayLq9QutnPI3-OoSBwQ8sG745nZXW-W3VHyQCnwxw0lFdSCVQwIJaQRZ9mMkoYUFa-b8ymuoJjeL7OrEPaEUCpKPsvGZYc2Gm2UjMbZ3Ok8fmK-iX5QcfA4AW_SuqBkj_lKjujDhK2HPpp-SvNXjOidcoejCyZiyIdg7C7femnDwYQw2T71qKJPwdoon8zccbzJLrTsA97-3NfZx_PTdvFarN5flov5qlBA6ljwEsqmI1SiFBoAOgAmBeugFFoqXpVaVlQCIAiqOgJcat0o1tBS6a7mDK6z-5Pv0buvAUNs927wNpVsWcNqzgmvaGI9nFi7NGdrrHbRS5VOhwejnEVtEj5PP1izShCRBPQkmOYJHnV79OYg_dhS0k4raf-sJGnYSRMS1-7Q_7byv-gbbKqPTg</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Volkov, R. L.</creator><creator>Borgardt, N. I.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy</title><author>Volkov, R. L. ; Borgardt, N. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-45359d01aea8f333d332a82d358fac465fa61a33e381cd034aff9c2915cfd7423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amorphous materials</topic><topic>Basic Research</topic><topic>Composition</topic><topic>Crystallites</topic><topic>Cubic lattice</topic><topic>Electron microscopy</topic><topic>Electrons</topic><topic>Foils</topic><topic>Glass substrates</topic><topic>High resolution electron microscopy</topic><topic>Ion beams</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>Multilayers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polycrystals</topic><topic>Silicon dioxide</topic><topic>Thickness measurement</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkov, R. L.</creatorcontrib><creatorcontrib>Borgardt, N. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkov, R. L.</au><au>Borgardt, N. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2023</date><risdate>2023</risdate><volume>57</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The methods of transmission electron microscopy and high-resolution electron microscopy, used to study multilayer heterocomposites, have limitations in resolution, do not allow for the effective investigation of amorphous materials and require the analysis of many local areas in the case of samples consisting of individual crystallites. In this work, we investigate a multilayer heterocomposite, which is a phase-shift photomask consisting of layers of nanoscale thickness on the surface of a glass substrate. Focused-ion-beam methods are used to study a thin foil of cross and longitudinal sections. To identify the structure and determine the composition of the layers, the methods of transmission electron microscopy and energy-dispersive X-ray microanalysis are used. The analysis of cross-sectional foils prepared using standard approaches allows visualization, thickness measurements, and determination of the layer compositions. It is shown that on the SiO 2 substrate an amorphous layer of Mo 0.06 Si 0.31 N 0.63 93 nm thick is formed, which is successively coated with polycrystalline layers of Cr 0.56 N 0.44 , Cr 0.74 C 0.06 N 0.2 , and Cr 0.4 N 0.26 O 0.3 with thicknesses of 22, 37, and 8 nm, respectively. A thin foil with a planar cross-section, prepared at a slight inclination to the surface of the photomask, makes it possible to form sections of all layers with dimensions sufficient for their study by electron microdiffraction. The performed electrographic analysis confirmed the amorphous structure of the substrate and Mo 0.06 Si 0.31 N 0.63 layer, and also showed that polycrystalline layers of Cr 0.56 N 0.44 , Cr 0.74 C 0.06 N 0.2 , and Cr 0.4 N 0.26 O 0.3 formed by crystallites with a cubic lattice and parameters of 3.92, 4.18, and 4.12 Å, respectively.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782623010098</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2023, Vol.57 (1), p.1-10
issn 1063-7826
1090-6479
language eng
recordid cdi_proquest_journals_2927440461
source SpringerLink Journals - AutoHoldings
subjects Amorphous materials
Basic Research
Composition
Crystallites
Cubic lattice
Electron microscopy
Electrons
Foils
Glass substrates
High resolution electron microscopy
Ion beams
Magnetic Materials
Magnetism
Multilayers
Physics
Physics and Astronomy
Polycrystals
Silicon dioxide
Thickness measurement
Transmission electron microscopy
title Identification of the Structure of Nanoscale Layers of Multilayer Heterocomposites using Transmission Electron Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20Structure%20of%20Nanoscale%20Layers%20of%20Multilayer%20Heterocomposites%20using%20Transmission%20Electron%20Microscopy&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Volkov,%20R.%20L.&rft.date=2023&rft.volume=57&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782623010098&rft_dat=%3Cgale_proqu%3EA782726808%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927440461&rft_id=info:pmid/&rft_galeid=A782726808&rfr_iscdi=true