A branching random walk in the presence of a hard wall

We consider a branching random walk on a d-ary tree of height n ( $n \in \mathbb{N}$ ), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying $d\geqslant2$ . We consider the behaviour of Gaussian processes with long-range interactions, for e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied probability 2024-03, Vol.61 (1), p.1-17
1. Verfasser: Roy, Rishideep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title Journal of applied probability
container_volume 61
creator Roy, Rishideep
description We consider a branching random walk on a d-ary tree of height n ( $n \in \mathbb{N}$ ), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying $d\geqslant2$ . We consider the behaviour of Gaussian processes with long-range interactions, for example the discrete Gaussian free field, under the condition that it is positive on a large subset of vertices. We observe a relation with the expected maximum of the processes. We find the probability of the event that the branching random walk is positive at every vertex in the nth generation, and show that the conditional expectation of the Gaussian variable at a typical vertex, under positivity, is less than the expected maximum by order of $\log n$ .
doi_str_mv 10.1017/jpr.2023.17
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927091643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jpr_2023_17</cupid><sourcerecordid>2927091643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-6fb9467fe8cc0e9e21f6cd26d32c9f432c95c42f43d12b9d4a460bae625714923</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKsnv0DAo2zNzGYTcyxFq1DwoueQzZ92a7u7JlvEb2-WFrx4efNgfvMGHiG3wGbAQD5s-zhDhuUM5BmZAJdVIZjEczJhDKFQWS_JVUpbxoBXSk6ImNM6mtZumnZNs3Hdnn6b3SdtWjpsPO2jT761nnaBGrox0Y3r3TW5CGaX_M1pTsnH89P74qVYvS1fF_NVYbGSQyFCrbiQwT9ay7zyCEFYh8KVaFXgo1aWY3YOsFaOGy5YbbzI18AVllNyd8ztY_d18GnQ2-4Q2_xSo0LJFAheZur-SNnYpRR90H1s9ib-aGB6LEbnYvRYjAaZ6eJEm30dG7f2f6H_8b9uhGMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927091643</pqid></control><display><type>article</type><title>A branching random walk in the presence of a hard wall</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>Roy, Rishideep</creator><creatorcontrib>Roy, Rishideep</creatorcontrib><description>We consider a branching random walk on a d-ary tree of height n ( $n \in \mathbb{N}$ ), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying $d\geqslant2$ . We consider the behaviour of Gaussian processes with long-range interactions, for example the discrete Gaussian free field, under the condition that it is positive on a large subset of vertices. We observe a relation with the expected maximum of the processes. We find the probability of the event that the branching random walk is positive at every vertex in the nth generation, and show that the conditional expectation of the Gaussian variable at a typical vertex, under positivity, is less than the expected maximum by order of $\log n$ .</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/jpr.2023.17</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Apexes ; Expected values ; Gaussian process ; Original Article ; Random variables ; Random walk</subject><ispartof>Journal of applied probability, 2024-03, Vol.61 (1), p.1-17</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-6fb9467fe8cc0e9e21f6cd26d32c9f432c95c42f43d12b9d4a460bae625714923</cites><orcidid>0000-0003-1883-7848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900223000177/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Roy, Rishideep</creatorcontrib><title>A branching random walk in the presence of a hard wall</title><title>Journal of applied probability</title><addtitle>J. Appl. Probab</addtitle><description>We consider a branching random walk on a d-ary tree of height n ( $n \in \mathbb{N}$ ), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying $d\geqslant2$ . We consider the behaviour of Gaussian processes with long-range interactions, for example the discrete Gaussian free field, under the condition that it is positive on a large subset of vertices. We observe a relation with the expected maximum of the processes. We find the probability of the event that the branching random walk is positive at every vertex in the nth generation, and show that the conditional expectation of the Gaussian variable at a typical vertex, under positivity, is less than the expected maximum by order of $\log n$ .</description><subject>Apexes</subject><subject>Expected values</subject><subject>Gaussian process</subject><subject>Original Article</subject><subject>Random variables</subject><subject>Random walk</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWKsnv0DAo2zNzGYTcyxFq1DwoueQzZ92a7u7JlvEb2-WFrx4efNgfvMGHiG3wGbAQD5s-zhDhuUM5BmZAJdVIZjEczJhDKFQWS_JVUpbxoBXSk6ImNM6mtZumnZNs3Hdnn6b3SdtWjpsPO2jT761nnaBGrox0Y3r3TW5CGaX_M1pTsnH89P74qVYvS1fF_NVYbGSQyFCrbiQwT9ay7zyCEFYh8KVaFXgo1aWY3YOsFaOGy5YbbzI18AVllNyd8ztY_d18GnQ2-4Q2_xSo0LJFAheZur-SNnYpRR90H1s9ib-aGB6LEbnYvRYjAaZ6eJEm30dG7f2f6H_8b9uhGMQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Roy, Rishideep</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1883-7848</orcidid></search><sort><creationdate>20240301</creationdate><title>A branching random walk in the presence of a hard wall</title><author>Roy, Rishideep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-6fb9467fe8cc0e9e21f6cd26d32c9f432c95c42f43d12b9d4a460bae625714923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Expected values</topic><topic>Gaussian process</topic><topic>Original Article</topic><topic>Random variables</topic><topic>Random walk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Rishideep</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Rishideep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A branching random walk in the presence of a hard wall</atitle><jtitle>Journal of applied probability</jtitle><addtitle>J. Appl. Probab</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>61</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We consider a branching random walk on a d-ary tree of height n ( $n \in \mathbb{N}$ ), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying $d\geqslant2$ . We consider the behaviour of Gaussian processes with long-range interactions, for example the discrete Gaussian free field, under the condition that it is positive on a large subset of vertices. We observe a relation with the expected maximum of the processes. We find the probability of the event that the branching random walk is positive at every vertex in the nth generation, and show that the conditional expectation of the Gaussian variable at a typical vertex, under positivity, is less than the expected maximum by order of $\log n$ .</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jpr.2023.17</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1883-7848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9002
ispartof Journal of applied probability, 2024-03, Vol.61 (1), p.1-17
issn 0021-9002
1475-6072
language eng
recordid cdi_proquest_journals_2927091643
source Cambridge Journals - Connect here FIRST to enable access
subjects Apexes
Expected values
Gaussian process
Original Article
Random variables
Random walk
title A branching random walk in the presence of a hard wall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20branching%20random%20walk%20in%20the%20presence%20of%20a%20hard%20wall&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Roy,%20Rishideep&rft.date=2024-03-01&rft.volume=61&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/jpr.2023.17&rft_dat=%3Cproquest_cross%3E2927091643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927091643&rft_id=info:pmid/&rft_cupid=10_1017_jpr_2023_17&rfr_iscdi=true