A branching random walk in the presence of a hard wall
We consider a branching random walk on a d-ary tree of height n ( $n \in \mathbb{N}$ ), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying $d\geqslant2$ . We consider the behaviour of Gaussian processes with long-range interactions, for e...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2024-03, Vol.61 (1), p.1-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of applied probability |
container_volume | 61 |
creator | Roy, Rishideep |
description | We consider a branching random walk on a d-ary tree of height n (
$n \in \mathbb{N}$
), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying
$d\geqslant2$
. We consider the behaviour of Gaussian processes with long-range interactions, for example the discrete Gaussian free field, under the condition that it is positive on a large subset of vertices. We observe a relation with the expected maximum of the processes. We find the probability of the event that the branching random walk is positive at every vertex in the nth generation, and show that the conditional expectation of the Gaussian variable at a typical vertex, under positivity, is less than the expected maximum by order of
$\log n$
. |
doi_str_mv | 10.1017/jpr.2023.17 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2927091643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jpr_2023_17</cupid><sourcerecordid>2927091643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-6fb9467fe8cc0e9e21f6cd26d32c9f432c95c42f43d12b9d4a460bae625714923</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWKsnv0DAo2zNzGYTcyxFq1DwoueQzZ92a7u7JlvEb2-WFrx4efNgfvMGHiG3wGbAQD5s-zhDhuUM5BmZAJdVIZjEczJhDKFQWS_JVUpbxoBXSk6ImNM6mtZumnZNs3Hdnn6b3SdtWjpsPO2jT761nnaBGrox0Y3r3TW5CGaX_M1pTsnH89P74qVYvS1fF_NVYbGSQyFCrbiQwT9ay7zyCEFYh8KVaFXgo1aWY3YOsFaOGy5YbbzI18AVllNyd8ztY_d18GnQ2-4Q2_xSo0LJFAheZur-SNnYpRR90H1s9ib-aGB6LEbnYvRYjAaZ6eJEm30dG7f2f6H_8b9uhGMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2927091643</pqid></control><display><type>article</type><title>A branching random walk in the presence of a hard wall</title><source>Cambridge Journals - Connect here FIRST to enable access</source><creator>Roy, Rishideep</creator><creatorcontrib>Roy, Rishideep</creatorcontrib><description>We consider a branching random walk on a d-ary tree of height n (
$n \in \mathbb{N}$
), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying
$d\geqslant2$
. We consider the behaviour of Gaussian processes with long-range interactions, for example the discrete Gaussian free field, under the condition that it is positive on a large subset of vertices. We observe a relation with the expected maximum of the processes. We find the probability of the event that the branching random walk is positive at every vertex in the nth generation, and show that the conditional expectation of the Gaussian variable at a typical vertex, under positivity, is less than the expected maximum by order of
$\log n$
.</description><identifier>ISSN: 0021-9002</identifier><identifier>EISSN: 1475-6072</identifier><identifier>DOI: 10.1017/jpr.2023.17</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Apexes ; Expected values ; Gaussian process ; Original Article ; Random variables ; Random walk</subject><ispartof>Journal of applied probability, 2024-03, Vol.61 (1), p.1-17</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-6fb9467fe8cc0e9e21f6cd26d32c9f432c95c42f43d12b9d4a460bae625714923</cites><orcidid>0000-0003-1883-7848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0021900223000177/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Roy, Rishideep</creatorcontrib><title>A branching random walk in the presence of a hard wall</title><title>Journal of applied probability</title><addtitle>J. Appl. Probab</addtitle><description>We consider a branching random walk on a d-ary tree of height n (
$n \in \mathbb{N}$
), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying
$d\geqslant2$
. We consider the behaviour of Gaussian processes with long-range interactions, for example the discrete Gaussian free field, under the condition that it is positive on a large subset of vertices. We observe a relation with the expected maximum of the processes. We find the probability of the event that the branching random walk is positive at every vertex in the nth generation, and show that the conditional expectation of the Gaussian variable at a typical vertex, under positivity, is less than the expected maximum by order of
$\log n$
.</description><subject>Apexes</subject><subject>Expected values</subject><subject>Gaussian process</subject><subject>Original Article</subject><subject>Random variables</subject><subject>Random walk</subject><issn>0021-9002</issn><issn>1475-6072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWKsnv0DAo2zNzGYTcyxFq1DwoueQzZ92a7u7JlvEb2-WFrx4efNgfvMGHiG3wGbAQD5s-zhDhuUM5BmZAJdVIZjEczJhDKFQWS_JVUpbxoBXSk6ImNM6mtZumnZNs3Hdnn6b3SdtWjpsPO2jT761nnaBGrox0Y3r3TW5CGaX_M1pTsnH89P74qVYvS1fF_NVYbGSQyFCrbiQwT9ay7zyCEFYh8KVaFXgo1aWY3YOsFaOGy5YbbzI18AVllNyd8ztY_d18GnQ2-4Q2_xSo0LJFAheZur-SNnYpRR90H1s9ib-aGB6LEbnYvRYjAaZ6eJEm30dG7f2f6H_8b9uhGMQ</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Roy, Rishideep</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1883-7848</orcidid></search><sort><creationdate>20240301</creationdate><title>A branching random walk in the presence of a hard wall</title><author>Roy, Rishideep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-6fb9467fe8cc0e9e21f6cd26d32c9f432c95c42f43d12b9d4a460bae625714923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apexes</topic><topic>Expected values</topic><topic>Gaussian process</topic><topic>Original Article</topic><topic>Random variables</topic><topic>Random walk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Rishideep</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Rishideep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A branching random walk in the presence of a hard wall</atitle><jtitle>Journal of applied probability</jtitle><addtitle>J. Appl. Probab</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>61</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0021-9002</issn><eissn>1475-6072</eissn><abstract>We consider a branching random walk on a d-ary tree of height n (
$n \in \mathbb{N}$
), in the presence of a hard wall which restricts each value to be positive, where d is a natural number satisfying
$d\geqslant2$
. We consider the behaviour of Gaussian processes with long-range interactions, for example the discrete Gaussian free field, under the condition that it is positive on a large subset of vertices. We observe a relation with the expected maximum of the processes. We find the probability of the event that the branching random walk is positive at every vertex in the nth generation, and show that the conditional expectation of the Gaussian variable at a typical vertex, under positivity, is less than the expected maximum by order of
$\log n$
.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jpr.2023.17</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1883-7848</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9002 |
ispartof | Journal of applied probability, 2024-03, Vol.61 (1), p.1-17 |
issn | 0021-9002 1475-6072 |
language | eng |
recordid | cdi_proquest_journals_2927091643 |
source | Cambridge Journals - Connect here FIRST to enable access |
subjects | Apexes Expected values Gaussian process Original Article Random variables Random walk |
title | A branching random walk in the presence of a hard wall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20branching%20random%20walk%20in%20the%20presence%20of%20a%20hard%20wall&rft.jtitle=Journal%20of%20applied%20probability&rft.au=Roy,%20Rishideep&rft.date=2024-03-01&rft.volume=61&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0021-9002&rft.eissn=1475-6072&rft_id=info:doi/10.1017/jpr.2023.17&rft_dat=%3Cproquest_cross%3E2927091643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2927091643&rft_id=info:pmid/&rft_cupid=10_1017_jpr_2023_17&rfr_iscdi=true |