Taking GPU Programming Models to Task for Performance Portability
Portability is critical to ensuring high productivity in developing and maintaining scientific software as the diversity in on-node hardware architectures increases. While several programming models provide portability for diverse GPU platforms, they don't make any guarantees about performance...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-05 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Davis, Joshua H Sivaraman, Pranav Kitson, Joy Parasyris, Konstantinos Menon, Harshitha Minn, Isaac Giorgis Georgakoudis Bhatele, Abhinav |
description | Portability is critical to ensuring high productivity in developing and maintaining scientific software as the diversity in on-node hardware architectures increases. While several programming models provide portability for diverse GPU platforms, they don't make any guarantees about performance portability. In this work, we explore several programming models -- CUDA, HIP, Kokkos, RAJA, OpenMP, OpenACC, and SYCL, to study if the performance of these models is consistently good across NVIDIA and AMD GPUs. We use five proxy applications from different scientific domains, create implementations where missing, and use them to present a comprehensive comparative evaluation of the programming models. We provide a Spack scripting-based methodology to ensure reproducibility of experiments conducted in this work. Finally, we attempt to answer the question -- to what extent does each programming model provide performance portability for heterogeneous systems in real-world usage? |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2926944448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926944448</sourcerecordid><originalsourceid>FETCH-proquest_journals_29269444483</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDEnMzsxLV3APCFUIKMpPL0rMzQXxffNTUnOKFUryFUISi7MV0vKLFAJSi4BUbmJecqpCQH5RSWJSZk5mSSUPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbWRqZWZoAgYUxcaoAOLY5IQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926944448</pqid></control><display><type>article</type><title>Taking GPU Programming Models to Task for Performance Portability</title><source>Free E- Journals</source><creator>Davis, Joshua H ; Sivaraman, Pranav ; Kitson, Joy ; Parasyris, Konstantinos ; Menon, Harshitha ; Minn, Isaac ; Giorgis Georgakoudis ; Bhatele, Abhinav</creator><creatorcontrib>Davis, Joshua H ; Sivaraman, Pranav ; Kitson, Joy ; Parasyris, Konstantinos ; Menon, Harshitha ; Minn, Isaac ; Giorgis Georgakoudis ; Bhatele, Abhinav</creatorcontrib><description>Portability is critical to ensuring high productivity in developing and maintaining scientific software as the diversity in on-node hardware architectures increases. While several programming models provide portability for diverse GPU platforms, they don't make any guarantees about performance portability. In this work, we explore several programming models -- CUDA, HIP, Kokkos, RAJA, OpenMP, OpenACC, and SYCL, to study if the performance of these models is consistently good across NVIDIA and AMD GPUs. We use five proxy applications from different scientific domains, create implementations where missing, and use them to present a comprehensive comparative evaluation of the programming models. We provide a Spack scripting-based methodology to ensure reproducibility of experiments conducted in this work. Finally, we attempt to answer the question -- to what extent does each programming model provide performance portability for heterogeneous systems in real-world usage?</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graphics processing units ; Performance evaluation ; Platforms ; Portability ; Programming ; Software development</subject><ispartof>arXiv.org, 2024-05</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Davis, Joshua H</creatorcontrib><creatorcontrib>Sivaraman, Pranav</creatorcontrib><creatorcontrib>Kitson, Joy</creatorcontrib><creatorcontrib>Parasyris, Konstantinos</creatorcontrib><creatorcontrib>Menon, Harshitha</creatorcontrib><creatorcontrib>Minn, Isaac</creatorcontrib><creatorcontrib>Giorgis Georgakoudis</creatorcontrib><creatorcontrib>Bhatele, Abhinav</creatorcontrib><title>Taking GPU Programming Models to Task for Performance Portability</title><title>arXiv.org</title><description>Portability is critical to ensuring high productivity in developing and maintaining scientific software as the diversity in on-node hardware architectures increases. While several programming models provide portability for diverse GPU platforms, they don't make any guarantees about performance portability. In this work, we explore several programming models -- CUDA, HIP, Kokkos, RAJA, OpenMP, OpenACC, and SYCL, to study if the performance of these models is consistently good across NVIDIA and AMD GPUs. We use five proxy applications from different scientific domains, create implementations where missing, and use them to present a comprehensive comparative evaluation of the programming models. We provide a Spack scripting-based methodology to ensure reproducibility of experiments conducted in this work. Finally, we attempt to answer the question -- to what extent does each programming model provide performance portability for heterogeneous systems in real-world usage?</description><subject>Graphics processing units</subject><subject>Performance evaluation</subject><subject>Platforms</subject><subject>Portability</subject><subject>Programming</subject><subject>Software development</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwDEnMzsxLV3APCFUIKMpPL0rMzQXxffNTUnOKFUryFUISi7MV0vKLFAJSi4BUbmJecqpCQH5RSWJSZk5mSSUPA2taYk5xKi-U5mZQdnMNcfbQLSjKLyxNLS6Jz8ovLcoDSsUbWRqZWZoAgYUxcaoAOLY5IQ</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Davis, Joshua H</creator><creator>Sivaraman, Pranav</creator><creator>Kitson, Joy</creator><creator>Parasyris, Konstantinos</creator><creator>Menon, Harshitha</creator><creator>Minn, Isaac</creator><creator>Giorgis Georgakoudis</creator><creator>Bhatele, Abhinav</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240521</creationdate><title>Taking GPU Programming Models to Task for Performance Portability</title><author>Davis, Joshua H ; Sivaraman, Pranav ; Kitson, Joy ; Parasyris, Konstantinos ; Menon, Harshitha ; Minn, Isaac ; Giorgis Georgakoudis ; Bhatele, Abhinav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29269444483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Graphics processing units</topic><topic>Performance evaluation</topic><topic>Platforms</topic><topic>Portability</topic><topic>Programming</topic><topic>Software development</topic><toplevel>online_resources</toplevel><creatorcontrib>Davis, Joshua H</creatorcontrib><creatorcontrib>Sivaraman, Pranav</creatorcontrib><creatorcontrib>Kitson, Joy</creatorcontrib><creatorcontrib>Parasyris, Konstantinos</creatorcontrib><creatorcontrib>Menon, Harshitha</creatorcontrib><creatorcontrib>Minn, Isaac</creatorcontrib><creatorcontrib>Giorgis Georgakoudis</creatorcontrib><creatorcontrib>Bhatele, Abhinav</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Joshua H</au><au>Sivaraman, Pranav</au><au>Kitson, Joy</au><au>Parasyris, Konstantinos</au><au>Menon, Harshitha</au><au>Minn, Isaac</au><au>Giorgis Georgakoudis</au><au>Bhatele, Abhinav</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Taking GPU Programming Models to Task for Performance Portability</atitle><jtitle>arXiv.org</jtitle><date>2024-05-21</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Portability is critical to ensuring high productivity in developing and maintaining scientific software as the diversity in on-node hardware architectures increases. While several programming models provide portability for diverse GPU platforms, they don't make any guarantees about performance portability. In this work, we explore several programming models -- CUDA, HIP, Kokkos, RAJA, OpenMP, OpenACC, and SYCL, to study if the performance of these models is consistently good across NVIDIA and AMD GPUs. We use five proxy applications from different scientific domains, create implementations where missing, and use them to present a comprehensive comparative evaluation of the programming models. We provide a Spack scripting-based methodology to ensure reproducibility of experiments conducted in this work. Finally, we attempt to answer the question -- to what extent does each programming model provide performance portability for heterogeneous systems in real-world usage?</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2926944448 |
source | Free E- Journals |
subjects | Graphics processing units Performance evaluation Platforms Portability Programming Software development |
title | Taking GPU Programming Models to Task for Performance Portability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Taking%20GPU%20Programming%20Models%20to%20Task%20for%20Performance%20Portability&rft.jtitle=arXiv.org&rft.au=Davis,%20Joshua%20H&rft.date=2024-05-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2926944448%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926944448&rft_id=info:pmid/&rfr_iscdi=true |