Aggregated wind power characteristic curves and artificial intelligence for the regional wind power infeed estimation

The wind power generation is highly dependent on current weather conditions. In the course of the energy transition, the generation levels from volatile wind energy are constantly increasing. Accordingly, the prediction of regional wind power generation is a particularly important and challenging ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering 2024-02, Vol.106 (1), p.655-671
Hauptverfasser: Li, Yang, Janik, Przemysław, Schwarz, Harald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 671
container_issue 1
container_start_page 655
container_title Electrical engineering
container_volume 106
creator Li, Yang
Janik, Przemysław
Schwarz, Harald
description The wind power generation is highly dependent on current weather conditions. In the course of the energy transition, the generation levels from volatile wind energy are constantly increasing. Accordingly, the prediction of regional wind power generation is a particularly important and challenging task due to the highly distributed installations. This paper presents a study on the role of regional wind power infeed estimation and proposes a multi-aggregated wind power characteristics model based on three scaled Gumbel distribution functions. Multi-levels of wind turbines and their allocation are investigated for the regional aggregated wind power. Relative peak power performance and full load hours are compared for the proposed model and the real measurement obtained from a local distribution system operator. Furthermore, artificial intelligence technologies using neural networks, such as Long Short-Term Memory (LSTM), stacked LSTM and CNN–LSTM, are investigated by using different historical measurement as input data. The results show that the suggested stacked LSTM performs stably and reliably in regional power prediction.
doi_str_mv 10.1007/s00202-023-02005-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926609595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926609595</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-7b48a0e80b41a9374e644271ebd5bf69ff437035693084bb85b73803ebfdd8123</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19WbR5tmOQy-YMCNrkPa3nQy1HZMWgfn1xsdQVcuQiDnnO_eHEIuGVwzAHUTATjwDLhIByDP9kdkxqRIT7JUx2QGWpaZ0pydkrMYNwAgci1nZFq0bcDWjtjQne8buh12GGi9tsHWIwYfR1_TegrvGKlNug2jd772tqO-H7HrfIt9jdQNgY5rpAnmhz6pf2i-d5j4mFivdkzyOTlxtot48XPPycvd7fPyIVs93T8uF6usFkyOmapkaQFLqCSzWiiJhZRcMayavHKFdk4KlT5SaAGlrKoyr5QoQWDlmqZkXMzJ1YG7DcPblOabzTCFtF00XPOiAJ3rPLn4wVWHIcaAzmxDWjR8GAbmq15zqNekes13vWafQuIQisnctxh-0f-kPgGsGH-r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926609595</pqid></control><display><type>article</type><title>Aggregated wind power characteristic curves and artificial intelligence for the regional wind power infeed estimation</title><source>Springer Online Journals</source><creator>Li, Yang ; Janik, Przemysław ; Schwarz, Harald</creator><creatorcontrib>Li, Yang ; Janik, Przemysław ; Schwarz, Harald</creatorcontrib><description>The wind power generation is highly dependent on current weather conditions. In the course of the energy transition, the generation levels from volatile wind energy are constantly increasing. Accordingly, the prediction of regional wind power generation is a particularly important and challenging task due to the highly distributed installations. This paper presents a study on the role of regional wind power infeed estimation and proposes a multi-aggregated wind power characteristics model based on three scaled Gumbel distribution functions. Multi-levels of wind turbines and their allocation are investigated for the regional aggregated wind power. Relative peak power performance and full load hours are compared for the proposed model and the real measurement obtained from a local distribution system operator. Furthermore, artificial intelligence technologies using neural networks, such as Long Short-Term Memory (LSTM), stacked LSTM and CNN–LSTM, are investigated by using different historical measurement as input data. The results show that the suggested stacked LSTM performs stably and reliably in regional power prediction.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-023-02005-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial intelligence ; Artificial neural networks ; Distribution functions ; Economics and Management ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Original Paper ; Power Electronics ; Weather ; Wind power ; Wind power generation ; Wind turbines</subject><ispartof>Electrical engineering, 2024-02, Vol.106 (1), p.655-671</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-7b48a0e80b41a9374e644271ebd5bf69ff437035693084bb85b73803ebfdd8123</cites><orcidid>0000-0001-8070-2704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-023-02005-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-023-02005-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27915,27916,41479,42548,51310</link.rule.ids></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Janik, Przemysław</creatorcontrib><creatorcontrib>Schwarz, Harald</creatorcontrib><title>Aggregated wind power characteristic curves and artificial intelligence for the regional wind power infeed estimation</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>The wind power generation is highly dependent on current weather conditions. In the course of the energy transition, the generation levels from volatile wind energy are constantly increasing. Accordingly, the prediction of regional wind power generation is a particularly important and challenging task due to the highly distributed installations. This paper presents a study on the role of regional wind power infeed estimation and proposes a multi-aggregated wind power characteristics model based on three scaled Gumbel distribution functions. Multi-levels of wind turbines and their allocation are investigated for the regional aggregated wind power. Relative peak power performance and full load hours are compared for the proposed model and the real measurement obtained from a local distribution system operator. Furthermore, artificial intelligence technologies using neural networks, such as Long Short-Term Memory (LSTM), stacked LSTM and CNN–LSTM, are investigated by using different historical measurement as input data. The results show that the suggested stacked LSTM performs stably and reliably in regional power prediction.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Distribution functions</subject><subject>Economics and Management</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Original Paper</subject><subject>Power Electronics</subject><subject>Weather</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>Wind turbines</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19WbR5tmOQy-YMCNrkPa3nQy1HZMWgfn1xsdQVcuQiDnnO_eHEIuGVwzAHUTATjwDLhIByDP9kdkxqRIT7JUx2QGWpaZ0pydkrMYNwAgci1nZFq0bcDWjtjQne8buh12GGi9tsHWIwYfR1_TegrvGKlNug2jd772tqO-H7HrfIt9jdQNgY5rpAnmhz6pf2i-d5j4mFivdkzyOTlxtot48XPPycvd7fPyIVs93T8uF6usFkyOmapkaQFLqCSzWiiJhZRcMayavHKFdk4KlT5SaAGlrKoyr5QoQWDlmqZkXMzJ1YG7DcPblOabzTCFtF00XPOiAJ3rPLn4wVWHIcaAzmxDWjR8GAbmq15zqNekes13vWafQuIQisnctxh-0f-kPgGsGH-r</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Li, Yang</creator><creator>Janik, Przemysław</creator><creator>Schwarz, Harald</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8070-2704</orcidid></search><sort><creationdate>20240201</creationdate><title>Aggregated wind power characteristic curves and artificial intelligence for the regional wind power infeed estimation</title><author>Li, Yang ; Janik, Przemysław ; Schwarz, Harald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-7b48a0e80b41a9374e644271ebd5bf69ff437035693084bb85b73803ebfdd8123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Distribution functions</topic><topic>Economics and Management</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Original Paper</topic><topic>Power Electronics</topic><topic>Weather</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Janik, Przemysław</creatorcontrib><creatorcontrib>Schwarz, Harald</creatorcontrib><collection>Springer Open Access</collection><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Janik, Przemysław</au><au>Schwarz, Harald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aggregated wind power characteristic curves and artificial intelligence for the regional wind power infeed estimation</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>106</volume><issue>1</issue><spage>655</spage><epage>671</epage><pages>655-671</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>The wind power generation is highly dependent on current weather conditions. In the course of the energy transition, the generation levels from volatile wind energy are constantly increasing. Accordingly, the prediction of regional wind power generation is a particularly important and challenging task due to the highly distributed installations. This paper presents a study on the role of regional wind power infeed estimation and proposes a multi-aggregated wind power characteristics model based on three scaled Gumbel distribution functions. Multi-levels of wind turbines and their allocation are investigated for the regional aggregated wind power. Relative peak power performance and full load hours are compared for the proposed model and the real measurement obtained from a local distribution system operator. Furthermore, artificial intelligence technologies using neural networks, such as Long Short-Term Memory (LSTM), stacked LSTM and CNN–LSTM, are investigated by using different historical measurement as input data. The results show that the suggested stacked LSTM performs stably and reliably in regional power prediction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-023-02005-z</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-8070-2704</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0948-7921
ispartof Electrical engineering, 2024-02, Vol.106 (1), p.655-671
issn 0948-7921
1432-0487
language eng
recordid cdi_proquest_journals_2926609595
source Springer Online Journals
subjects Artificial intelligence
Artificial neural networks
Distribution functions
Economics and Management
Electrical Engineering
Electrical Machines and Networks
Energy Policy
Engineering
Original Paper
Power Electronics
Weather
Wind power
Wind power generation
Wind turbines
title Aggregated wind power characteristic curves and artificial intelligence for the regional wind power infeed estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T20%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aggregated%20wind%20power%20characteristic%20curves%20and%20artificial%20intelligence%20for%20the%20regional%20wind%20power%20infeed%20estimation&rft.jtitle=Electrical%20engineering&rft.au=Li,%20Yang&rft.date=2024-02-01&rft.volume=106&rft.issue=1&rft.spage=655&rft.epage=671&rft.pages=655-671&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-023-02005-z&rft_dat=%3Cproquest_cross%3E2926609595%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926609595&rft_id=info:pmid/&rfr_iscdi=true