Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller
This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed c...
Gespeichert in:
Veröffentlicht in: | Electrical engineering 2024-02, Vol.106 (1), p.553-565 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 565 |
---|---|
container_issue | 1 |
container_start_page | 553 |
container_title | Electrical engineering |
container_volume | 106 |
creator | El kharki, Abdellah Boulghasoul, Zakaria Et-taaj, Lamyae Elbacha, Abdelhadi |
description | This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed control. Yet, in some cases, when the load or mechanical parameters change according to its working conditions, the integral proportional (IP) efficiency decreases, and the setup quality degrades. In this case, a neural IP-self-tuning seems to overcome these difficulties and ensure a good control performance. The results obtained through the implementation of the proposed control on a dSPACE system and an induction motor clearly demonstrate the effectiveness of this method. |
doi_str_mv | 10.1007/s00202-023-02011-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926605465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926605465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9a8c9579ac0dee4a58caad55b4c0870a01bf165da8f6ec0b730a132ed4ac54133</originalsourceid><addsrcrecordid>eNp9kM9OHDEMxiPUSmyBF-AUqecpTiaZP9wq1AISUjnAOfJmPGxgJtkmGRB9C96YbLdSbxwsy9b382d9jJ0K-CYA2rMEIEFWIOtSIEQlDthKqLqsVNd-YivoVVe1vRSH7EtKjwBQ616t2Nt9dpP74_wD97REnErLLyE-JT6GyIdXj7OzfEuxjDN6S9zN2xieaSafeRi588NiswuezyHvkOie6ZwjHyOlDcdtUaPd8BeXNzxviPsCT_z6tko0jVVe_M7cBp9jmCaKx-zziFOik3_9iN3__HF3cVXd_Lq8vvh-U1nZQq567Gyv2x4tDEQKdWcRB63XykLXAoJYj6LRA3ZjQxbWbQ0oakmDQquVqOsj9nV_t_z3e6GUzWNYoi-WRvayaUCrRheV3KtsDClFGs02uhnjqxFgdtGbffSmRG_-Rm9Egeo9lIrYP1D8f_oD6h0_q4p7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926605465</pqid></control><display><type>article</type><title>Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller</title><source>Springer Nature - Complete Springer Journals</source><creator>El kharki, Abdellah ; Boulghasoul, Zakaria ; Et-taaj, Lamyae ; Elbacha, Abdelhadi</creator><creatorcontrib>El kharki, Abdellah ; Boulghasoul, Zakaria ; Et-taaj, Lamyae ; Elbacha, Abdelhadi</creatorcontrib><description>This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed control. Yet, in some cases, when the load or mechanical parameters change according to its working conditions, the integral proportional (IP) efficiency decreases, and the setup quality degrades. In this case, a neural IP-self-tuning seems to overcome these difficulties and ensure a good control performance. The results obtained through the implementation of the proposed control on a dSPACE system and an induction motor clearly demonstrate the effectiveness of this method.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-023-02011-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Controllers ; Economics and Management ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Induction motors ; Mechanical properties ; Neural networks ; Original Paper ; Power Electronics ; Self tuning ; Speed control ; Speed regulators</subject><ispartof>Electrical engineering, 2024-02, Vol.106 (1), p.553-565</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9a8c9579ac0dee4a58caad55b4c0870a01bf165da8f6ec0b730a132ed4ac54133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-023-02011-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-023-02011-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>El kharki, Abdellah</creatorcontrib><creatorcontrib>Boulghasoul, Zakaria</creatorcontrib><creatorcontrib>Et-taaj, Lamyae</creatorcontrib><creatorcontrib>Elbacha, Abdelhadi</creatorcontrib><title>Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed control. Yet, in some cases, when the load or mechanical parameters change according to its working conditions, the integral proportional (IP) efficiency decreases, and the setup quality degrades. In this case, a neural IP-self-tuning seems to overcome these difficulties and ensure a good control performance. The results obtained through the implementation of the proposed control on a dSPACE system and an induction motor clearly demonstrate the effectiveness of this method.</description><subject>Controllers</subject><subject>Economics and Management</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Induction motors</subject><subject>Mechanical properties</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Power Electronics</subject><subject>Self tuning</subject><subject>Speed control</subject><subject>Speed regulators</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OHDEMxiPUSmyBF-AUqecpTiaZP9wq1AISUjnAOfJmPGxgJtkmGRB9C96YbLdSbxwsy9b382d9jJ0K-CYA2rMEIEFWIOtSIEQlDthKqLqsVNd-YivoVVe1vRSH7EtKjwBQ616t2Nt9dpP74_wD97REnErLLyE-JT6GyIdXj7OzfEuxjDN6S9zN2xieaSafeRi588NiswuezyHvkOie6ZwjHyOlDcdtUaPd8BeXNzxviPsCT_z6tko0jVVe_M7cBp9jmCaKx-zziFOik3_9iN3__HF3cVXd_Lq8vvh-U1nZQq567Gyv2x4tDEQKdWcRB63XykLXAoJYj6LRA3ZjQxbWbQ0oakmDQquVqOsj9nV_t_z3e6GUzWNYoi-WRvayaUCrRheV3KtsDClFGs02uhnjqxFgdtGbffSmRG_-Rm9Egeo9lIrYP1D8f_oD6h0_q4p7</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>El kharki, Abdellah</creator><creator>Boulghasoul, Zakaria</creator><creator>Et-taaj, Lamyae</creator><creator>Elbacha, Abdelhadi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller</title><author>El kharki, Abdellah ; Boulghasoul, Zakaria ; Et-taaj, Lamyae ; Elbacha, Abdelhadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9a8c9579ac0dee4a58caad55b4c0870a01bf165da8f6ec0b730a132ed4ac54133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllers</topic><topic>Economics and Management</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Induction motors</topic><topic>Mechanical properties</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Power Electronics</topic><topic>Self tuning</topic><topic>Speed control</topic><topic>Speed regulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El kharki, Abdellah</creatorcontrib><creatorcontrib>Boulghasoul, Zakaria</creatorcontrib><creatorcontrib>Et-taaj, Lamyae</creatorcontrib><creatorcontrib>Elbacha, Abdelhadi</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El kharki, Abdellah</au><au>Boulghasoul, Zakaria</au><au>Et-taaj, Lamyae</au><au>Elbacha, Abdelhadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>106</volume><issue>1</issue><spage>553</spage><epage>565</epage><pages>553-565</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed control. Yet, in some cases, when the load or mechanical parameters change according to its working conditions, the integral proportional (IP) efficiency decreases, and the setup quality degrades. In this case, a neural IP-self-tuning seems to overcome these difficulties and ensure a good control performance. The results obtained through the implementation of the proposed control on a dSPACE system and an induction motor clearly demonstrate the effectiveness of this method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-023-02011-1</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0948-7921 |
ispartof | Electrical engineering, 2024-02, Vol.106 (1), p.553-565 |
issn | 0948-7921 1432-0487 |
language | eng |
recordid | cdi_proquest_journals_2926605465 |
source | Springer Nature - Complete Springer Journals |
subjects | Controllers Economics and Management Electrical Engineering Electrical Machines and Networks Energy Policy Engineering Induction motors Mechanical properties Neural networks Original Paper Power Electronics Self tuning Speed control Speed regulators |
title | Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20neural%20networks%20for%20dynamic%20performance%20improvement%20of%20induction%20motor%20drive:%20a%20fresh%20approach%20with%20the%20novel%20IP-self-tuning%20controller&rft.jtitle=Electrical%20engineering&rft.au=El%20kharki,%20Abdellah&rft.date=2024-02-01&rft.volume=106&rft.issue=1&rft.spage=553&rft.epage=565&rft.pages=553-565&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-023-02011-1&rft_dat=%3Cproquest_cross%3E2926605465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926605465&rft_id=info:pmid/&rfr_iscdi=true |