Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller

This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrical engineering 2024-02, Vol.106 (1), p.553-565
Hauptverfasser: El kharki, Abdellah, Boulghasoul, Zakaria, Et-taaj, Lamyae, Elbacha, Abdelhadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 565
container_issue 1
container_start_page 553
container_title Electrical engineering
container_volume 106
creator El kharki, Abdellah
Boulghasoul, Zakaria
Et-taaj, Lamyae
Elbacha, Abdelhadi
description This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed control. Yet, in some cases, when the load or mechanical parameters change according to its working conditions, the integral proportional (IP) efficiency decreases, and the setup quality degrades. In this case, a neural IP-self-tuning seems to overcome these difficulties and ensure a good control performance. The results obtained through the implementation of the proposed control on a dSPACE system and an induction motor clearly demonstrate the effectiveness of this method.
doi_str_mv 10.1007/s00202-023-02011-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926605465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926605465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9a8c9579ac0dee4a58caad55b4c0870a01bf165da8f6ec0b730a132ed4ac54133</originalsourceid><addsrcrecordid>eNp9kM9OHDEMxiPUSmyBF-AUqecpTiaZP9wq1AISUjnAOfJmPGxgJtkmGRB9C96YbLdSbxwsy9b382d9jJ0K-CYA2rMEIEFWIOtSIEQlDthKqLqsVNd-YivoVVe1vRSH7EtKjwBQ616t2Nt9dpP74_wD97REnErLLyE-JT6GyIdXj7OzfEuxjDN6S9zN2xieaSafeRi588NiswuezyHvkOie6ZwjHyOlDcdtUaPd8BeXNzxviPsCT_z6tko0jVVe_M7cBp9jmCaKx-zziFOik3_9iN3__HF3cVXd_Lq8vvh-U1nZQq567Gyv2x4tDEQKdWcRB63XykLXAoJYj6LRA3ZjQxbWbQ0oakmDQquVqOsj9nV_t_z3e6GUzWNYoi-WRvayaUCrRheV3KtsDClFGs02uhnjqxFgdtGbffSmRG_-Rm9Egeo9lIrYP1D8f_oD6h0_q4p7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926605465</pqid></control><display><type>article</type><title>Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller</title><source>Springer Nature - Complete Springer Journals</source><creator>El kharki, Abdellah ; Boulghasoul, Zakaria ; Et-taaj, Lamyae ; Elbacha, Abdelhadi</creator><creatorcontrib>El kharki, Abdellah ; Boulghasoul, Zakaria ; Et-taaj, Lamyae ; Elbacha, Abdelhadi</creatorcontrib><description>This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed control. Yet, in some cases, when the load or mechanical parameters change according to its working conditions, the integral proportional (IP) efficiency decreases, and the setup quality degrades. In this case, a neural IP-self-tuning seems to overcome these difficulties and ensure a good control performance. The results obtained through the implementation of the proposed control on a dSPACE system and an induction motor clearly demonstrate the effectiveness of this method.</description><identifier>ISSN: 0948-7921</identifier><identifier>EISSN: 1432-0487</identifier><identifier>DOI: 10.1007/s00202-023-02011-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Controllers ; Economics and Management ; Electrical Engineering ; Electrical Machines and Networks ; Energy Policy ; Engineering ; Induction motors ; Mechanical properties ; Neural networks ; Original Paper ; Power Electronics ; Self tuning ; Speed control ; Speed regulators</subject><ispartof>Electrical engineering, 2024-02, Vol.106 (1), p.553-565</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9a8c9579ac0dee4a58caad55b4c0870a01bf165da8f6ec0b730a132ed4ac54133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00202-023-02011-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00202-023-02011-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>El kharki, Abdellah</creatorcontrib><creatorcontrib>Boulghasoul, Zakaria</creatorcontrib><creatorcontrib>Et-taaj, Lamyae</creatorcontrib><creatorcontrib>Elbacha, Abdelhadi</creatorcontrib><title>Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller</title><title>Electrical engineering</title><addtitle>Electr Eng</addtitle><description>This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed control. Yet, in some cases, when the load or mechanical parameters change according to its working conditions, the integral proportional (IP) efficiency decreases, and the setup quality degrades. In this case, a neural IP-self-tuning seems to overcome these difficulties and ensure a good control performance. The results obtained through the implementation of the proposed control on a dSPACE system and an induction motor clearly demonstrate the effectiveness of this method.</description><subject>Controllers</subject><subject>Economics and Management</subject><subject>Electrical Engineering</subject><subject>Electrical Machines and Networks</subject><subject>Energy Policy</subject><subject>Engineering</subject><subject>Induction motors</subject><subject>Mechanical properties</subject><subject>Neural networks</subject><subject>Original Paper</subject><subject>Power Electronics</subject><subject>Self tuning</subject><subject>Speed control</subject><subject>Speed regulators</subject><issn>0948-7921</issn><issn>1432-0487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OHDEMxiPUSmyBF-AUqecpTiaZP9wq1AISUjnAOfJmPGxgJtkmGRB9C96YbLdSbxwsy9b382d9jJ0K-CYA2rMEIEFWIOtSIEQlDthKqLqsVNd-YivoVVe1vRSH7EtKjwBQ616t2Nt9dpP74_wD97REnErLLyE-JT6GyIdXj7OzfEuxjDN6S9zN2xieaSafeRi588NiswuezyHvkOie6ZwjHyOlDcdtUaPd8BeXNzxviPsCT_z6tko0jVVe_M7cBp9jmCaKx-zziFOik3_9iN3__HF3cVXd_Lq8vvh-U1nZQq567Gyv2x4tDEQKdWcRB63XykLXAoJYj6LRA3ZjQxbWbQ0oakmDQquVqOsj9nV_t_z3e6GUzWNYoi-WRvayaUCrRheV3KtsDClFGs02uhnjqxFgdtGbffSmRG_-Rm9Egeo9lIrYP1D8f_oD6h0_q4p7</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>El kharki, Abdellah</creator><creator>Boulghasoul, Zakaria</creator><creator>Et-taaj, Lamyae</creator><creator>Elbacha, Abdelhadi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller</title><author>El kharki, Abdellah ; Boulghasoul, Zakaria ; Et-taaj, Lamyae ; Elbacha, Abdelhadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9a8c9579ac0dee4a58caad55b4c0870a01bf165da8f6ec0b730a132ed4ac54133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllers</topic><topic>Economics and Management</topic><topic>Electrical Engineering</topic><topic>Electrical Machines and Networks</topic><topic>Energy Policy</topic><topic>Engineering</topic><topic>Induction motors</topic><topic>Mechanical properties</topic><topic>Neural networks</topic><topic>Original Paper</topic><topic>Power Electronics</topic><topic>Self tuning</topic><topic>Speed control</topic><topic>Speed regulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El kharki, Abdellah</creatorcontrib><creatorcontrib>Boulghasoul, Zakaria</creatorcontrib><creatorcontrib>Et-taaj, Lamyae</creatorcontrib><creatorcontrib>Elbacha, Abdelhadi</creatorcontrib><collection>CrossRef</collection><jtitle>Electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El kharki, Abdellah</au><au>Boulghasoul, Zakaria</au><au>Et-taaj, Lamyae</au><au>Elbacha, Abdelhadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller</atitle><jtitle>Electrical engineering</jtitle><stitle>Electr Eng</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>106</volume><issue>1</issue><spage>553</spage><epage>565</epage><pages>553-565</pages><issn>0948-7921</issn><eissn>1432-0487</eissn><abstract>This paper introduces a neural network adjustment method for a single gain of an integral proportional (IP) speed regulator, to improve the speed control of an induction motor. Thanks to its simplicity and strength, the integral proportional (IP) controller is widely used in the industry for speed control. Yet, in some cases, when the load or mechanical parameters change according to its working conditions, the integral proportional (IP) efficiency decreases, and the setup quality degrades. In this case, a neural IP-self-tuning seems to overcome these difficulties and ensure a good control performance. The results obtained through the implementation of the proposed control on a dSPACE system and an induction motor clearly demonstrate the effectiveness of this method.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00202-023-02011-1</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0948-7921
ispartof Electrical engineering, 2024-02, Vol.106 (1), p.553-565
issn 0948-7921
1432-0487
language eng
recordid cdi_proquest_journals_2926605465
source Springer Nature - Complete Springer Journals
subjects Controllers
Economics and Management
Electrical Engineering
Electrical Machines and Networks
Energy Policy
Engineering
Induction motors
Mechanical properties
Neural networks
Original Paper
Power Electronics
Self tuning
Speed control
Speed regulators
title Utilizing neural networks for dynamic performance improvement of induction motor drive: a fresh approach with the novel IP-self-tuning controller
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Utilizing%20neural%20networks%20for%20dynamic%20performance%20improvement%20of%20induction%20motor%20drive:%20a%20fresh%20approach%20with%20the%20novel%20IP-self-tuning%20controller&rft.jtitle=Electrical%20engineering&rft.au=El%20kharki,%20Abdellah&rft.date=2024-02-01&rft.volume=106&rft.issue=1&rft.spage=553&rft.epage=565&rft.pages=553-565&rft.issn=0948-7921&rft.eissn=1432-0487&rft_id=info:doi/10.1007/s00202-023-02011-1&rft_dat=%3Cproquest_cross%3E2926605465%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926605465&rft_id=info:pmid/&rfr_iscdi=true