Bayesian parameter inference for partially observed stochastic volterra equations
In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In ma...
Gespeichert in:
Veröffentlicht in: | Statistics and computing 2024-04, Vol.34 (2), Article 78 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Statistics and computing |
container_volume | 34 |
creator | Jasra, Ajay Ruzayqat, Hamza Wu, Amin |
description | In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of
O
(
ϵ
2
)
,
ϵ
>
0
, is
O
(
ϵ
-
4
2
H
+
1
)
, where
H
is the Hurst parameter. If one uses a single level MCMC method then the cost is
O
(
ϵ
-
2
(
2
H
+
3
)
2
H
+
1
)
to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data. |
doi_str_mv | 10.1007/s11222-024-10389-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926605224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926605224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1053e7d34989012a1fff144af3523bc0798b024e280df3dbe85630082448dc223</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9XJJG3Soy7-gwUR9BzSdqJdus1u0l3Yb2-0gjdPA8P7vTfzGLvkcM0B1E3kHBFzQJlzELrKyyM244USOReqOGYzqErIBVfylJ3FuALgvBRyxl7v7IFiZ4dsY4Nd00gh6wZHgYaGMufD937sbN8fMl9HCntqszj65tPGsWuyve8TEmxG250dOz_Ec3bibB_p4nfO2fvD_dviKV--PD4vbpd5gwrGdGYhSLVCVroCjpY757iU1okCRd2AqnSd3iHU0DrR1qSLUgBolFK3DaKYs6vJdxP8dkdxNCu_C0OKNFhhWUKBKJMKJ1UTfIyBnNmEbm3DwXAw39WZqTqTssxPdaZMkJigmMTDB4U_63-oLxqjcWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926605224</pqid></control><display><type>article</type><title>Bayesian parameter inference for partially observed stochastic volterra equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jasra, Ajay ; Ruzayqat, Hamza ; Wu, Amin</creator><creatorcontrib>Jasra, Ajay ; Ruzayqat, Hamza ; Wu, Amin</creatorcontrib><description>In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of
O
(
ϵ
2
)
,
ϵ
>
0
, is
O
(
ϵ
-
4
2
H
+
1
)
, where
H
is the Hurst parameter. If one uses a single level MCMC method then the cost is
O
(
ϵ
-
2
(
2
H
+
3
)
2
H
+
1
)
to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-024-10389-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Bayesian analysis ; Computer Science ; Context ; Discretization ; Inference ; Markov chains ; Original Paper ; Parameters ; Probability and Statistics in Computer Science ; Statistical Theory and Methods ; Statistics and Computing/Statistics Programs ; Stochastic models ; Volatility ; Volterra integral equations</subject><ispartof>Statistics and computing, 2024-04, Vol.34 (2), Article 78</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1053e7d34989012a1fff144af3523bc0798b024e280df3dbe85630082448dc223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-024-10389-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-024-10389-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Jasra, Ajay</creatorcontrib><creatorcontrib>Ruzayqat, Hamza</creatorcontrib><creatorcontrib>Wu, Amin</creatorcontrib><title>Bayesian parameter inference for partially observed stochastic volterra equations</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of
O
(
ϵ
2
)
,
ϵ
>
0
, is
O
(
ϵ
-
4
2
H
+
1
)
, where
H
is the Hurst parameter. If one uses a single level MCMC method then the cost is
O
(
ϵ
-
2
(
2
H
+
3
)
2
H
+
1
)
to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.</description><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Computer Science</subject><subject>Context</subject><subject>Discretization</subject><subject>Inference</subject><subject>Markov chains</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Probability and Statistics in Computer Science</subject><subject>Statistical Theory and Methods</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Stochastic models</subject><subject>Volatility</subject><subject>Volterra integral equations</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9XJJG3Soy7-gwUR9BzSdqJdus1u0l3Yb2-0gjdPA8P7vTfzGLvkcM0B1E3kHBFzQJlzELrKyyM244USOReqOGYzqErIBVfylJ3FuALgvBRyxl7v7IFiZ4dsY4Nd00gh6wZHgYaGMufD937sbN8fMl9HCntqszj65tPGsWuyve8TEmxG250dOz_Ec3bibB_p4nfO2fvD_dviKV--PD4vbpd5gwrGdGYhSLVCVroCjpY757iU1okCRd2AqnSd3iHU0DrR1qSLUgBolFK3DaKYs6vJdxP8dkdxNCu_C0OKNFhhWUKBKJMKJ1UTfIyBnNmEbm3DwXAw39WZqTqTssxPdaZMkJigmMTDB4U_63-oLxqjcWM</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Jasra, Ajay</creator><creator>Ruzayqat, Hamza</creator><creator>Wu, Amin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Bayesian parameter inference for partially observed stochastic volterra equations</title><author>Jasra, Ajay ; Ruzayqat, Hamza ; Wu, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1053e7d34989012a1fff144af3523bc0798b024e280df3dbe85630082448dc223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Computer Science</topic><topic>Context</topic><topic>Discretization</topic><topic>Inference</topic><topic>Markov chains</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Probability and Statistics in Computer Science</topic><topic>Statistical Theory and Methods</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Stochastic models</topic><topic>Volatility</topic><topic>Volterra integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasra, Ajay</creatorcontrib><creatorcontrib>Ruzayqat, Hamza</creatorcontrib><creatorcontrib>Wu, Amin</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasra, Ajay</au><au>Ruzayqat, Hamza</au><au>Wu, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian parameter inference for partially observed stochastic volterra equations</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><artnum>78</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of
O
(
ϵ
2
)
,
ϵ
>
0
, is
O
(
ϵ
-
4
2
H
+
1
)
, where
H
is the Hurst parameter. If one uses a single level MCMC method then the cost is
O
(
ϵ
-
2
(
2
H
+
3
)
2
H
+
1
)
to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-024-10389-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2024-04, Vol.34 (2), Article 78 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_proquest_journals_2926605224 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Bayesian analysis Computer Science Context Discretization Inference Markov chains Original Paper Parameters Probability and Statistics in Computer Science Statistical Theory and Methods Statistics and Computing/Statistics Programs Stochastic models Volatility Volterra integral equations |
title | Bayesian parameter inference for partially observed stochastic volterra equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20parameter%20inference%20for%20partially%20observed%20stochastic%20volterra%20equations&rft.jtitle=Statistics%20and%20computing&rft.au=Jasra,%20Ajay&rft.date=2024-04-01&rft.volume=34&rft.issue=2&rft.artnum=78&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-024-10389-6&rft_dat=%3Cproquest_cross%3E2926605224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926605224&rft_id=info:pmid/&rfr_iscdi=true |