Bayesian parameter inference for partially observed stochastic volterra equations

In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2024-04, Vol.34 (2), Article 78
Hauptverfasser: Jasra, Ajay, Ruzayqat, Hamza, Wu, Amin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Statistics and computing
container_volume 34
creator Jasra, Ajay
Ruzayqat, Hamza
Wu, Amin
description In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of O ( ϵ 2 ) , ϵ > 0 , is O ( ϵ - 4 2 H + 1 ) , where H is the Hurst parameter. If one uses a single level MCMC method then the cost is O ( ϵ - 2 ( 2 H + 3 ) 2 H + 1 ) to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.
doi_str_mv 10.1007/s11222-024-10389-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926605224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926605224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1053e7d34989012a1fff144af3523bc0798b024e280df3dbe85630082448dc223</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9XJJG3Soy7-gwUR9BzSdqJdus1u0l3Yb2-0gjdPA8P7vTfzGLvkcM0B1E3kHBFzQJlzELrKyyM244USOReqOGYzqErIBVfylJ3FuALgvBRyxl7v7IFiZ4dsY4Nd00gh6wZHgYaGMufD937sbN8fMl9HCntqszj65tPGsWuyve8TEmxG250dOz_Ec3bibB_p4nfO2fvD_dviKV--PD4vbpd5gwrGdGYhSLVCVroCjpY757iU1okCRd2AqnSd3iHU0DrR1qSLUgBolFK3DaKYs6vJdxP8dkdxNCu_C0OKNFhhWUKBKJMKJ1UTfIyBnNmEbm3DwXAw39WZqTqTssxPdaZMkJigmMTDB4U_63-oLxqjcWM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926605224</pqid></control><display><type>article</type><title>Bayesian parameter inference for partially observed stochastic volterra equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jasra, Ajay ; Ruzayqat, Hamza ; Wu, Amin</creator><creatorcontrib>Jasra, Ajay ; Ruzayqat, Hamza ; Wu, Amin</creatorcontrib><description>In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of O ( ϵ 2 ) , ϵ &gt; 0 , is O ( ϵ - 4 2 H + 1 ) , where H is the Hurst parameter. If one uses a single level MCMC method then the cost is O ( ϵ - 2 ( 2 H + 3 ) 2 H + 1 ) to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-024-10389-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Bayesian analysis ; Computer Science ; Context ; Discretization ; Inference ; Markov chains ; Original Paper ; Parameters ; Probability and Statistics in Computer Science ; Statistical Theory and Methods ; Statistics and Computing/Statistics Programs ; Stochastic models ; Volatility ; Volterra integral equations</subject><ispartof>Statistics and computing, 2024-04, Vol.34 (2), Article 78</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1053e7d34989012a1fff144af3523bc0798b024e280df3dbe85630082448dc223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-024-10389-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-024-10389-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Jasra, Ajay</creatorcontrib><creatorcontrib>Ruzayqat, Hamza</creatorcontrib><creatorcontrib>Wu, Amin</creatorcontrib><title>Bayesian parameter inference for partially observed stochastic volterra equations</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of O ( ϵ 2 ) , ϵ &gt; 0 , is O ( ϵ - 4 2 H + 1 ) , where H is the Hurst parameter. If one uses a single level MCMC method then the cost is O ( ϵ - 2 ( 2 H + 3 ) 2 H + 1 ) to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.</description><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Computer Science</subject><subject>Context</subject><subject>Discretization</subject><subject>Inference</subject><subject>Markov chains</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Probability and Statistics in Computer Science</subject><subject>Statistical Theory and Methods</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Stochastic models</subject><subject>Volatility</subject><subject>Volterra integral equations</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9XJJG3Soy7-gwUR9BzSdqJdus1u0l3Yb2-0gjdPA8P7vTfzGLvkcM0B1E3kHBFzQJlzELrKyyM244USOReqOGYzqErIBVfylJ3FuALgvBRyxl7v7IFiZ4dsY4Nd00gh6wZHgYaGMufD937sbN8fMl9HCntqszj65tPGsWuyve8TEmxG250dOz_Ec3bibB_p4nfO2fvD_dviKV--PD4vbpd5gwrGdGYhSLVCVroCjpY757iU1okCRd2AqnSd3iHU0DrR1qSLUgBolFK3DaKYs6vJdxP8dkdxNCu_C0OKNFhhWUKBKJMKJ1UTfIyBnNmEbm3DwXAw39WZqTqTssxPdaZMkJigmMTDB4U_63-oLxqjcWM</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Jasra, Ajay</creator><creator>Ruzayqat, Hamza</creator><creator>Wu, Amin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240401</creationdate><title>Bayesian parameter inference for partially observed stochastic volterra equations</title><author>Jasra, Ajay ; Ruzayqat, Hamza ; Wu, Amin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1053e7d34989012a1fff144af3523bc0798b024e280df3dbe85630082448dc223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Computer Science</topic><topic>Context</topic><topic>Discretization</topic><topic>Inference</topic><topic>Markov chains</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Probability and Statistics in Computer Science</topic><topic>Statistical Theory and Methods</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Stochastic models</topic><topic>Volatility</topic><topic>Volterra integral equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jasra, Ajay</creatorcontrib><creatorcontrib>Ruzayqat, Hamza</creatorcontrib><creatorcontrib>Wu, Amin</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jasra, Ajay</au><au>Ruzayqat, Hamza</au><au>Wu, Amin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian parameter inference for partially observed stochastic volterra equations</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2024-04-01</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><artnum>78</artnum><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of O ( ϵ 2 ) , ϵ &gt; 0 , is O ( ϵ - 4 2 H + 1 ) , where H is the Hurst parameter. If one uses a single level MCMC method then the cost is O ( ϵ - 2 ( 2 H + 3 ) 2 H + 1 ) to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-024-10389-6</doi></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2024-04, Vol.34 (2), Article 78
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_2926605224
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Bayesian analysis
Computer Science
Context
Discretization
Inference
Markov chains
Original Paper
Parameters
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics and Computing/Statistics Programs
Stochastic models
Volatility
Volterra integral equations
title Bayesian parameter inference for partially observed stochastic volterra equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T08%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20parameter%20inference%20for%20partially%20observed%20stochastic%20volterra%20equations&rft.jtitle=Statistics%20and%20computing&rft.au=Jasra,%20Ajay&rft.date=2024-04-01&rft.volume=34&rft.issue=2&rft.artnum=78&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-024-10389-6&rft_dat=%3Cproquest_cross%3E2926605224%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926605224&rft_id=info:pmid/&rfr_iscdi=true