Inverse optimality of adaptive control for Korteweg-de Vries-Burgers equation

The Korteweg-de Vries-Burgers (KdVB) equation is one of the simplest nonlinear mathematical models, which is used to model motion of waves in a variety of fluid flow processes. And inverse optimality allows the design of optimal control laws, which may minimize/maximize a physical quantity of intere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2024-02, Vol.12 (2), p.486-493
Hauptverfasser: Cai, Xiushan, Lin, Yuhang, Lin, Cong, Liu, Leipo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 493
container_issue 2
container_start_page 486
container_title International journal of dynamics and control
container_volume 12
creator Cai, Xiushan
Lin, Yuhang
Lin, Cong
Liu, Leipo
description The Korteweg-de Vries-Burgers (KdVB) equation is one of the simplest nonlinear mathematical models, which is used to model motion of waves in a variety of fluid flow processes. And inverse optimality allows the design of optimal control laws, which may minimize/maximize a physical quantity of interest and which may possess certain robustness margins, without the need to solve a Hamilton-Jacobi-Isaacs partial differential equation (PDE) that may not be possible to solve. Therefore, it is important to study inverse optimal control for KdVB equation. In this paper, it is proved that the boundary control of Balogh and Krstic (IEEE Trans Autom Control 45(9):1739-1745, 2000) is inverse optimal for a meaningful functional. Next, an adaptive boundary control design for KdVB equation with an unknown dissipation coefficient is presented. Furthermore, it is shown that this adaptive control design is also inverse optimal for a meaningful functional. Two examples are given to illustrate the validity of the proposed design.
doi_str_mv 10.1007/s40435-023-01195-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926602504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926602504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-93d7c2cc91d3ba4477bcea84731de50a474ba0686fb5572d4dcf2b677556c0de3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EElXpC3CyxNmwduw4OULFT0URF0DcLMd2qlQlTu2kqG-PSxDcOO2sNDOr_RA6p3BJAeRV5MAzQYBlBCgtBRFHaMIOguVlcfyri_dTNItxDQCMcmC8nKCnRbtzITrsu7750Jum32NfY2112ncOG9_2wW9w7QN-9KF3n25FrMNvoXGR3AxhldLYbQfdN749Qye13kQ3-5lT9Hp3-zJ_IMvn-8X8ekkMk9CTMrPSMGNKarNKcy5lZZwuuMyodQI0l7zSkBd5XQkhmeXW1KzKpRQiN2BdNkUXY28X_HZwsVdrP4Q2nVSsZHkOTCQkU8RGlwk-xuBq1YX0Y9grCupATo3kVCKnvskpkULZGIrJ3Kbv_qr_SX0BWLhxTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926602504</pqid></control><display><type>article</type><title>Inverse optimality of adaptive control for Korteweg-de Vries-Burgers equation</title><source>SpringerLink</source><creator>Cai, Xiushan ; Lin, Yuhang ; Lin, Cong ; Liu, Leipo</creator><creatorcontrib>Cai, Xiushan ; Lin, Yuhang ; Lin, Cong ; Liu, Leipo</creatorcontrib><description>The Korteweg-de Vries-Burgers (KdVB) equation is one of the simplest nonlinear mathematical models, which is used to model motion of waves in a variety of fluid flow processes. And inverse optimality allows the design of optimal control laws, which may minimize/maximize a physical quantity of interest and which may possess certain robustness margins, without the need to solve a Hamilton-Jacobi-Isaacs partial differential equation (PDE) that may not be possible to solve. Therefore, it is important to study inverse optimal control for KdVB equation. In this paper, it is proved that the boundary control of Balogh and Krstic (IEEE Trans Autom Control 45(9):1739-1745, 2000) is inverse optimal for a meaningful functional. Next, an adaptive boundary control design for KdVB equation with an unknown dissipation coefficient is presented. Furthermore, it is shown that this adaptive control design is also inverse optimal for a meaningful functional. Two examples are given to illustrate the validity of the proposed design.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-023-01195-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control ; Boundary control ; Burgers equation ; Complexity ; Control ; Control and Systems Theory ; Control theory ; Dynamical Systems ; Engineering ; Fluid flow ; Mathematical models ; Optimal control ; Optimization ; Partial differential equations ; Robustness (mathematics) ; Vibration</subject><ispartof>International journal of dynamics and control, 2024-02, Vol.12 (2), p.486-493</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-93d7c2cc91d3ba4477bcea84731de50a474ba0686fb5572d4dcf2b677556c0de3</cites><orcidid>0000-0001-9698-9148</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-023-01195-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-023-01195-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cai, Xiushan</creatorcontrib><creatorcontrib>Lin, Yuhang</creatorcontrib><creatorcontrib>Lin, Cong</creatorcontrib><creatorcontrib>Liu, Leipo</creatorcontrib><title>Inverse optimality of adaptive control for Korteweg-de Vries-Burgers equation</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>The Korteweg-de Vries-Burgers (KdVB) equation is one of the simplest nonlinear mathematical models, which is used to model motion of waves in a variety of fluid flow processes. And inverse optimality allows the design of optimal control laws, which may minimize/maximize a physical quantity of interest and which may possess certain robustness margins, without the need to solve a Hamilton-Jacobi-Isaacs partial differential equation (PDE) that may not be possible to solve. Therefore, it is important to study inverse optimal control for KdVB equation. In this paper, it is proved that the boundary control of Balogh and Krstic (IEEE Trans Autom Control 45(9):1739-1745, 2000) is inverse optimal for a meaningful functional. Next, an adaptive boundary control design for KdVB equation with an unknown dissipation coefficient is presented. Furthermore, it is shown that this adaptive control design is also inverse optimal for a meaningful functional. Two examples are given to illustrate the validity of the proposed design.</description><subject>Adaptive control</subject><subject>Boundary control</subject><subject>Burgers equation</subject><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Control theory</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Mathematical models</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Partial differential equations</subject><subject>Robustness (mathematics)</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EElXpC3CyxNmwduw4OULFT0URF0DcLMd2qlQlTu2kqG-PSxDcOO2sNDOr_RA6p3BJAeRV5MAzQYBlBCgtBRFHaMIOguVlcfyri_dTNItxDQCMcmC8nKCnRbtzITrsu7750Jum32NfY2112ncOG9_2wW9w7QN-9KF3n25FrMNvoXGR3AxhldLYbQfdN749Qye13kQ3-5lT9Hp3-zJ_IMvn-8X8ekkMk9CTMrPSMGNKarNKcy5lZZwuuMyodQI0l7zSkBd5XQkhmeXW1KzKpRQiN2BdNkUXY28X_HZwsVdrP4Q2nVSsZHkOTCQkU8RGlwk-xuBq1YX0Y9grCupATo3kVCKnvskpkULZGIrJ3Kbv_qr_SX0BWLhxTA</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Cai, Xiushan</creator><creator>Lin, Yuhang</creator><creator>Lin, Cong</creator><creator>Liu, Leipo</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9698-9148</orcidid></search><sort><creationdate>20240201</creationdate><title>Inverse optimality of adaptive control for Korteweg-de Vries-Burgers equation</title><author>Cai, Xiushan ; Lin, Yuhang ; Lin, Cong ; Liu, Leipo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-93d7c2cc91d3ba4477bcea84731de50a474ba0686fb5572d4dcf2b677556c0de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Boundary control</topic><topic>Burgers equation</topic><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Control theory</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Mathematical models</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Partial differential equations</topic><topic>Robustness (mathematics)</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Cai, Xiushan</creatorcontrib><creatorcontrib>Lin, Yuhang</creatorcontrib><creatorcontrib>Lin, Cong</creatorcontrib><creatorcontrib>Liu, Leipo</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Xiushan</au><au>Lin, Yuhang</au><au>Lin, Cong</au><au>Liu, Leipo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse optimality of adaptive control for Korteweg-de Vries-Burgers equation</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>12</volume><issue>2</issue><spage>486</spage><epage>493</epage><pages>486-493</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>The Korteweg-de Vries-Burgers (KdVB) equation is one of the simplest nonlinear mathematical models, which is used to model motion of waves in a variety of fluid flow processes. And inverse optimality allows the design of optimal control laws, which may minimize/maximize a physical quantity of interest and which may possess certain robustness margins, without the need to solve a Hamilton-Jacobi-Isaacs partial differential equation (PDE) that may not be possible to solve. Therefore, it is important to study inverse optimal control for KdVB equation. In this paper, it is proved that the boundary control of Balogh and Krstic (IEEE Trans Autom Control 45(9):1739-1745, 2000) is inverse optimal for a meaningful functional. Next, an adaptive boundary control design for KdVB equation with an unknown dissipation coefficient is presented. Furthermore, it is shown that this adaptive control design is also inverse optimal for a meaningful functional. Two examples are given to illustrate the validity of the proposed design.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-023-01195-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9698-9148</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2024-02, Vol.12 (2), p.486-493
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2926602504
source SpringerLink
subjects Adaptive control
Boundary control
Burgers equation
Complexity
Control
Control and Systems Theory
Control theory
Dynamical Systems
Engineering
Fluid flow
Mathematical models
Optimal control
Optimization
Partial differential equations
Robustness (mathematics)
Vibration
title Inverse optimality of adaptive control for Korteweg-de Vries-Burgers equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20optimality%20of%20adaptive%20control%20for%20Korteweg-de%20Vries-Burgers%20equation&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Cai,%20Xiushan&rft.date=2024-02-01&rft.volume=12&rft.issue=2&rft.spage=486&rft.epage=493&rft.pages=486-493&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-023-01195-5&rft_dat=%3Cproquest_cross%3E2926602504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926602504&rft_id=info:pmid/&rfr_iscdi=true