Post-groups, (Lie-)Butcher groups and the Yang–Baxter equation

The notions of a post-group and a pre-group are introduced as a unification and enrichment of several group structures appearing in diverse areas from numerical integration to the Yang–Baxter equation. First the Butcher group from numerical integration on Euclidean spaces and the -group of an operad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-01, Vol.388 (3), p.3127-3167
Hauptverfasser: Bai, Chengming, Guo, Li, Sheng, Yunhe, Tang, Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3167
container_issue 3
container_start_page 3127
container_title Mathematische annalen
container_volume 388
creator Bai, Chengming
Guo, Li
Sheng, Yunhe
Tang, Rong
description The notions of a post-group and a pre-group are introduced as a unification and enrichment of several group structures appearing in diverse areas from numerical integration to the Yang–Baxter equation. First the Butcher group from numerical integration on Euclidean spaces and the -group of an operad naturally admit a pre-group structure. Next a relative Rota–Baxter operator on a group naturally splits the group structure to a post-group structure. Conversely, a post-group gives rise to a relative Rota–Baxter operator on the sub-adjacent group. Further a post-group gives a braided group and a solution of the Yang–Baxter equation. Indeed the category of post-groups is isomorphic to the category of braided groups and the category of skew-left braces. Moreover a post-Lie group differentiates to a post-Lie algebra structure on the vector space of left invariant vector fields, showing that post-Lie groups are the integral objects of post-Lie algebras. Finally, post-Hopf algebras and post-Lie Magnus expansions are utilized to study the formal integration of post-Lie algebras. As a byproduct, a post-group structure is explicitly determined on the Lie–Butcher group from numerical integration on manifolds.
doi_str_mv 10.1007/s00208-023-02592-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926602458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926602458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c3613823c4c3d040bb0b27a30e9e57ccdd3b3ff95486e56e9d1ac1a600dae0633</originalsourceid><addsrcrecordid>eNp9UM1KxDAQDqLguvoCngpeFIxOMk3a3nQX_2BBD3rwFNI03R-03U1ScPfkO_iGPonRCt48zAzM9zPMR8ghgzMGkJ17AA45BY6xRMHpZosMWIqcshyybTKIuKAiR7ZL9rxfAAACiAG5eGh9oFPXdkt_mhxP5paejLpgZtYl_TbRTZWEmU2edTP9fP8Y6bcQQbvqdJi3zT7ZqfWLtwe_c0ierq8ex7d0cn9zN76cUIOsCLFLhjlHkxqsIIWyhJJnGsEWVmTGVBWWWNeFSHNphbRFxbRhWgJU2oJEHJKj3nfp2lVnfVCLtnNNPKl4waUEnsb3hoT3LONa752t1dLNX7VbKwbqOynVJ6ViUuonKbWJIuxFPpKbqXV_1v-ovgAr92vu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926602458</pqid></control><display><type>article</type><title>Post-groups, (Lie-)Butcher groups and the Yang–Baxter equation</title><source>SpringerLink Journals</source><creator>Bai, Chengming ; Guo, Li ; Sheng, Yunhe ; Tang, Rong</creator><creatorcontrib>Bai, Chengming ; Guo, Li ; Sheng, Yunhe ; Tang, Rong</creatorcontrib><description>The notions of a post-group and a pre-group are introduced as a unification and enrichment of several group structures appearing in diverse areas from numerical integration to the Yang–Baxter equation. First the Butcher group from numerical integration on Euclidean spaces and the -group of an operad naturally admit a pre-group structure. Next a relative Rota–Baxter operator on a group naturally splits the group structure to a post-group structure. Conversely, a post-group gives rise to a relative Rota–Baxter operator on the sub-adjacent group. Further a post-group gives a braided group and a solution of the Yang–Baxter equation. Indeed the category of post-groups is isomorphic to the category of braided groups and the category of skew-left braces. Moreover a post-Lie group differentiates to a post-Lie algebra structure on the vector space of left invariant vector fields, showing that post-Lie groups are the integral objects of post-Lie algebras. Finally, post-Hopf algebras and post-Lie Magnus expansions are utilized to study the formal integration of post-Lie algebras. As a byproduct, a post-group structure is explicitly determined on the Lie–Butcher group from numerical integration on manifolds.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-023-02592-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Braiding ; Fields (mathematics) ; Lie groups ; Mathematics ; Mathematics and Statistics ; Numerical integration ; Operators (mathematics) ; Vector spaces ; Vectors (mathematics)</subject><ispartof>Mathematische annalen, 2024-01, Vol.388 (3), p.3127-3167</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c3613823c4c3d040bb0b27a30e9e57ccdd3b3ff95486e56e9d1ac1a600dae0633</citedby><cites>FETCH-LOGICAL-c319t-c3613823c4c3d040bb0b27a30e9e57ccdd3b3ff95486e56e9d1ac1a600dae0633</cites><orcidid>0000-0002-3786-158X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-023-02592-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-023-02592-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bai, Chengming</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Sheng, Yunhe</creatorcontrib><creatorcontrib>Tang, Rong</creatorcontrib><title>Post-groups, (Lie-)Butcher groups and the Yang–Baxter equation</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>The notions of a post-group and a pre-group are introduced as a unification and enrichment of several group structures appearing in diverse areas from numerical integration to the Yang–Baxter equation. First the Butcher group from numerical integration on Euclidean spaces and the -group of an operad naturally admit a pre-group structure. Next a relative Rota–Baxter operator on a group naturally splits the group structure to a post-group structure. Conversely, a post-group gives rise to a relative Rota–Baxter operator on the sub-adjacent group. Further a post-group gives a braided group and a solution of the Yang–Baxter equation. Indeed the category of post-groups is isomorphic to the category of braided groups and the category of skew-left braces. Moreover a post-Lie group differentiates to a post-Lie algebra structure on the vector space of left invariant vector fields, showing that post-Lie groups are the integral objects of post-Lie algebras. Finally, post-Hopf algebras and post-Lie Magnus expansions are utilized to study the formal integration of post-Lie algebras. As a byproduct, a post-group structure is explicitly determined on the Lie–Butcher group from numerical integration on manifolds.</description><subject>Algebra</subject><subject>Braiding</subject><subject>Fields (mathematics)</subject><subject>Lie groups</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical integration</subject><subject>Operators (mathematics)</subject><subject>Vector spaces</subject><subject>Vectors (mathematics)</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UM1KxDAQDqLguvoCngpeFIxOMk3a3nQX_2BBD3rwFNI03R-03U1ScPfkO_iGPonRCt48zAzM9zPMR8ghgzMGkJ17AA45BY6xRMHpZosMWIqcshyybTKIuKAiR7ZL9rxfAAACiAG5eGh9oFPXdkt_mhxP5paejLpgZtYl_TbRTZWEmU2edTP9fP8Y6bcQQbvqdJi3zT7ZqfWLtwe_c0ierq8ex7d0cn9zN76cUIOsCLFLhjlHkxqsIIWyhJJnGsEWVmTGVBWWWNeFSHNphbRFxbRhWgJU2oJEHJKj3nfp2lVnfVCLtnNNPKl4waUEnsb3hoT3LONa752t1dLNX7VbKwbqOynVJ6ViUuonKbWJIuxFPpKbqXV_1v-ovgAr92vu</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Bai, Chengming</creator><creator>Guo, Li</creator><creator>Sheng, Yunhe</creator><creator>Tang, Rong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3786-158X</orcidid></search><sort><creationdate>20240101</creationdate><title>Post-groups, (Lie-)Butcher groups and the Yang–Baxter equation</title><author>Bai, Chengming ; Guo, Li ; Sheng, Yunhe ; Tang, Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c3613823c4c3d040bb0b27a30e9e57ccdd3b3ff95486e56e9d1ac1a600dae0633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Braiding</topic><topic>Fields (mathematics)</topic><topic>Lie groups</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical integration</topic><topic>Operators (mathematics)</topic><topic>Vector spaces</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Chengming</creatorcontrib><creatorcontrib>Guo, Li</creatorcontrib><creatorcontrib>Sheng, Yunhe</creatorcontrib><creatorcontrib>Tang, Rong</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Chengming</au><au>Guo, Li</au><au>Sheng, Yunhe</au><au>Tang, Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-groups, (Lie-)Butcher groups and the Yang–Baxter equation</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>388</volume><issue>3</issue><spage>3127</spage><epage>3167</epage><pages>3127-3167</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>The notions of a post-group and a pre-group are introduced as a unification and enrichment of several group structures appearing in diverse areas from numerical integration to the Yang–Baxter equation. First the Butcher group from numerical integration on Euclidean spaces and the -group of an operad naturally admit a pre-group structure. Next a relative Rota–Baxter operator on a group naturally splits the group structure to a post-group structure. Conversely, a post-group gives rise to a relative Rota–Baxter operator on the sub-adjacent group. Further a post-group gives a braided group and a solution of the Yang–Baxter equation. Indeed the category of post-groups is isomorphic to the category of braided groups and the category of skew-left braces. Moreover a post-Lie group differentiates to a post-Lie algebra structure on the vector space of left invariant vector fields, showing that post-Lie groups are the integral objects of post-Lie algebras. Finally, post-Hopf algebras and post-Lie Magnus expansions are utilized to study the formal integration of post-Lie algebras. As a byproduct, a post-group structure is explicitly determined on the Lie–Butcher group from numerical integration on manifolds.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-023-02592-z</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-3786-158X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2024-01, Vol.388 (3), p.3127-3167
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2926602458
source SpringerLink Journals
subjects Algebra
Braiding
Fields (mathematics)
Lie groups
Mathematics
Mathematics and Statistics
Numerical integration
Operators (mathematics)
Vector spaces
Vectors (mathematics)
title Post-groups, (Lie-)Butcher groups and the Yang–Baxter equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-groups,%20(Lie-)Butcher%20groups%20and%20the%20Yang%E2%80%93Baxter%20equation&rft.jtitle=Mathematische%20annalen&rft.au=Bai,%20Chengming&rft.date=2024-01-01&rft.volume=388&rft.issue=3&rft.spage=3127&rft.epage=3167&rft.pages=3127-3167&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-023-02592-z&rft_dat=%3Cproquest_cross%3E2926602458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926602458&rft_id=info:pmid/&rfr_iscdi=true