Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems

We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic wav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Communications 2024/01/01, Vol.E107.B(1), pp.39-48
Hauptverfasser: SHIRAKI, Ryuta, MORI, Yojiro, HASEGAWA, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 39
container_title IEICE Transactions on Communications
container_volume E107.B
creator SHIRAKI, Ryuta
MORI, Yojiro
HASEGAWA, Hiroshi
description We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.
doi_str_mv 10.1587/transcom.2023PNP0003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926362966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926362966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-6c8f3bbd8ed350e37d1d0e0a8f6650386e8692e42ea836e2dcb41e21e194b2e73</originalsourceid><addsrcrecordid>eNpNkF1PwjAUhhujiYj-Ay-WeD3sx9Z1l4KgJqhE4brpujMYshbbEsO_dwRBrs7JyfO8J3kRuiW4R1KR3QenjNe26VFM2eRtgjFmZ6hDsiSNCUvSc9TBOeGxSAm_RFfeLzEmghLaQdNHaGy5WalQWxONnGrgx7qvqK88lFF7elV6URuIxqCcqc08qqyLZsbBGlRokenud1N7v_M_tz5A46_RRaVWHm7-ZhfNRsPp4Dkevz-9DB7GsWY8DzHXomJFUQooWYqBZSUpMWAlKs5TzAQHwXMKCQUlGAda6iIhQAmQPCkoZKyL7va5a2e_N-CDXNqNM-1LSXPKGac55y2V7CntrPcOKrl2daPcVhIsd_3JQ3_ypL9W-9hrSx_UHI6ScqHWK_iXhgRnsi_JYTkJOcJ6oZwEw34B9vqD5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926362966</pqid></control><display><type>article</type><title>Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems</title><source>Alma/SFX Local Collection</source><creator>SHIRAKI, Ryuta ; MORI, Yojiro ; HASEGAWA, Hiroshi</creator><creatorcontrib>SHIRAKI, Ryuta ; MORI, Yojiro ; HASEGAWA, Hiroshi</creatorcontrib><description>We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.</description><identifier>ISSN: 0916-8516</identifier><identifier>EISSN: 1745-1345</identifier><identifier>DOI: 10.1587/transcom.2023PNP0003</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Back propagation ; Data recovery ; Demodulation ; digital coherent system ; digital signal processing ; Distortion ; Machine learning ; Mathematical models ; Polarization ; Waveforms</subject><ispartof>IEICE Transactions on Communications, 2024/01/01, Vol.E107.B(1), pp.39-48</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-6c8f3bbd8ed350e37d1d0e0a8f6650386e8692e42ea836e2dcb41e21e194b2e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>SHIRAKI, Ryuta</creatorcontrib><creatorcontrib>MORI, Yojiro</creatorcontrib><creatorcontrib>HASEGAWA, Hiroshi</creatorcontrib><title>Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems</title><title>IEICE Transactions on Communications</title><addtitle>IEICE Trans. Commun.</addtitle><description>We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.</description><subject>Back propagation</subject><subject>Data recovery</subject><subject>Demodulation</subject><subject>digital coherent system</subject><subject>digital signal processing</subject><subject>Distortion</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Polarization</subject><subject>Waveforms</subject><issn>0916-8516</issn><issn>1745-1345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1PwjAUhhujiYj-Ay-WeD3sx9Z1l4KgJqhE4brpujMYshbbEsO_dwRBrs7JyfO8J3kRuiW4R1KR3QenjNe26VFM2eRtgjFmZ6hDsiSNCUvSc9TBOeGxSAm_RFfeLzEmghLaQdNHaGy5WalQWxONnGrgx7qvqK88lFF7elV6URuIxqCcqc08qqyLZsbBGlRokenud1N7v_M_tz5A46_RRaVWHm7-ZhfNRsPp4Dkevz-9DB7GsWY8DzHXomJFUQooWYqBZSUpMWAlKs5TzAQHwXMKCQUlGAda6iIhQAmQPCkoZKyL7va5a2e_N-CDXNqNM-1LSXPKGac55y2V7CntrPcOKrl2daPcVhIsd_3JQ3_ypL9W-9hrSx_UHI6ScqHWK_iXhgRnsi_JYTkJOcJ6oZwEw34B9vqD5A</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>SHIRAKI, Ryuta</creator><creator>MORI, Yojiro</creator><creator>HASEGAWA, Hiroshi</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20240101</creationdate><title>Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems</title><author>SHIRAKI, Ryuta ; MORI, Yojiro ; HASEGAWA, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-6c8f3bbd8ed350e37d1d0e0a8f6650386e8692e42ea836e2dcb41e21e194b2e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back propagation</topic><topic>Data recovery</topic><topic>Demodulation</topic><topic>digital coherent system</topic><topic>digital signal processing</topic><topic>Distortion</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Polarization</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHIRAKI, Ryuta</creatorcontrib><creatorcontrib>MORI, Yojiro</creatorcontrib><creatorcontrib>HASEGAWA, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEICE Transactions on Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHIRAKI, Ryuta</au><au>MORI, Yojiro</au><au>HASEGAWA, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems</atitle><jtitle>IEICE Transactions on Communications</jtitle><addtitle>IEICE Trans. Commun.</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>E107.B</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><artnum>2023PNP0003</artnum><issn>0916-8516</issn><eissn>1745-1345</eissn><abstract>We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transcom.2023PNP0003</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-8516
ispartof IEICE Transactions on Communications, 2024/01/01, Vol.E107.B(1), pp.39-48
issn 0916-8516
1745-1345
language eng
recordid cdi_proquest_journals_2926362966
source Alma/SFX Local Collection
subjects Back propagation
Data recovery
Demodulation
digital coherent system
digital signal processing
Distortion
Machine learning
Mathematical models
Polarization
Waveforms
title Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demodulation%20Framework%20Based%20on%20Machine%20Learning%20for%20Unrepeated%20Transmission%20Systems&rft.jtitle=IEICE%20Transactions%20on%20Communications&rft.au=SHIRAKI,%20Ryuta&rft.date=2024-01-01&rft.volume=E107.B&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.artnum=2023PNP0003&rft.issn=0916-8516&rft.eissn=1745-1345&rft_id=info:doi/10.1587/transcom.2023PNP0003&rft_dat=%3Cproquest_cross%3E2926362966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926362966&rft_id=info:pmid/&rfr_iscdi=true