Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems
We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic wav...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Communications 2024/01/01, Vol.E107.B(1), pp.39-48 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | IEICE Transactions on Communications |
container_volume | E107.B |
creator | SHIRAKI, Ryuta MORI, Yojiro HASEGAWA, Hiroshi |
description | We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km. |
doi_str_mv | 10.1587/transcom.2023PNP0003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926362966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926362966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-6c8f3bbd8ed350e37d1d0e0a8f6650386e8692e42ea836e2dcb41e21e194b2e73</originalsourceid><addsrcrecordid>eNpNkF1PwjAUhhujiYj-Ay-WeD3sx9Z1l4KgJqhE4brpujMYshbbEsO_dwRBrs7JyfO8J3kRuiW4R1KR3QenjNe26VFM2eRtgjFmZ6hDsiSNCUvSc9TBOeGxSAm_RFfeLzEmghLaQdNHaGy5WalQWxONnGrgx7qvqK88lFF7elV6URuIxqCcqc08qqyLZsbBGlRokenud1N7v_M_tz5A46_RRaVWHm7-ZhfNRsPp4Dkevz-9DB7GsWY8DzHXomJFUQooWYqBZSUpMWAlKs5TzAQHwXMKCQUlGAda6iIhQAmQPCkoZKyL7va5a2e_N-CDXNqNM-1LSXPKGac55y2V7CntrPcOKrl2daPcVhIsd_3JQ3_ypL9W-9hrSx_UHI6ScqHWK_iXhgRnsi_JYTkJOcJ6oZwEw34B9vqD5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926362966</pqid></control><display><type>article</type><title>Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems</title><source>Alma/SFX Local Collection</source><creator>SHIRAKI, Ryuta ; MORI, Yojiro ; HASEGAWA, Hiroshi</creator><creatorcontrib>SHIRAKI, Ryuta ; MORI, Yojiro ; HASEGAWA, Hiroshi</creatorcontrib><description>We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.</description><identifier>ISSN: 0916-8516</identifier><identifier>EISSN: 1745-1345</identifier><identifier>DOI: 10.1587/transcom.2023PNP0003</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Back propagation ; Data recovery ; Demodulation ; digital coherent system ; digital signal processing ; Distortion ; Machine learning ; Mathematical models ; Polarization ; Waveforms</subject><ispartof>IEICE Transactions on Communications, 2024/01/01, Vol.E107.B(1), pp.39-48</ispartof><rights>2024 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-6c8f3bbd8ed350e37d1d0e0a8f6650386e8692e42ea836e2dcb41e21e194b2e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>SHIRAKI, Ryuta</creatorcontrib><creatorcontrib>MORI, Yojiro</creatorcontrib><creatorcontrib>HASEGAWA, Hiroshi</creatorcontrib><title>Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems</title><title>IEICE Transactions on Communications</title><addtitle>IEICE Trans. Commun.</addtitle><description>We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.</description><subject>Back propagation</subject><subject>Data recovery</subject><subject>Demodulation</subject><subject>digital coherent system</subject><subject>digital signal processing</subject><subject>Distortion</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Polarization</subject><subject>Waveforms</subject><issn>0916-8516</issn><issn>1745-1345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkF1PwjAUhhujiYj-Ay-WeD3sx9Z1l4KgJqhE4brpujMYshbbEsO_dwRBrs7JyfO8J3kRuiW4R1KR3QenjNe26VFM2eRtgjFmZ6hDsiSNCUvSc9TBOeGxSAm_RFfeLzEmghLaQdNHaGy5WalQWxONnGrgx7qvqK88lFF7elV6URuIxqCcqc08qqyLZsbBGlRokenud1N7v_M_tz5A46_RRaVWHm7-ZhfNRsPp4Dkevz-9DB7GsWY8DzHXomJFUQooWYqBZSUpMWAlKs5TzAQHwXMKCQUlGAda6iIhQAmQPCkoZKyL7va5a2e_N-CDXNqNM-1LSXPKGac55y2V7CntrPcOKrl2daPcVhIsd_3JQ3_ypL9W-9hrSx_UHI6ScqHWK_iXhgRnsi_JYTkJOcJ6oZwEw34B9vqD5A</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>SHIRAKI, Ryuta</creator><creator>MORI, Yojiro</creator><creator>HASEGAWA, Hiroshi</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20240101</creationdate><title>Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems</title><author>SHIRAKI, Ryuta ; MORI, Yojiro ; HASEGAWA, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-6c8f3bbd8ed350e37d1d0e0a8f6650386e8692e42ea836e2dcb41e21e194b2e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Back propagation</topic><topic>Data recovery</topic><topic>Demodulation</topic><topic>digital coherent system</topic><topic>digital signal processing</topic><topic>Distortion</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Polarization</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHIRAKI, Ryuta</creatorcontrib><creatorcontrib>MORI, Yojiro</creatorcontrib><creatorcontrib>HASEGAWA, Hiroshi</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEICE Transactions on Communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHIRAKI, Ryuta</au><au>MORI, Yojiro</au><au>HASEGAWA, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems</atitle><jtitle>IEICE Transactions on Communications</jtitle><addtitle>IEICE Trans. Commun.</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>E107.B</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><artnum>2023PNP0003</artnum><issn>0916-8516</issn><eissn>1745-1345</eissn><abstract>We propose a demodulation framework to extend the maximum distance of unrepeated transmission systems, where the simplest back propagation (BP), polarization and phase recovery, data arrangement for machine learning (ML), and symbol decision based on ML are rationally combined. The deterministic waveform distortion caused by fiber nonlinearity and chromatic dispersion is partially eliminated by BP whose calculation cost is minimized by adopting the single-step Fourier method in a pre-processing step. The non-deterministic waveform distortion, i.e., polarization and phase fluctuations, can be eliminated in a precise manner. Finally, the optimized ML model conducts the symbol decision under the influence of residual deterministic waveform distortion that cannot be cancelled by the simplest BP. Extensive numerical simulations confirm that a DP-16QAM signal can be transmitted over 240km of a standard single-mode fiber without optical repeaters. The maximum transmission distance is extended by 25km.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transcom.2023PNP0003</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8516 |
ispartof | IEICE Transactions on Communications, 2024/01/01, Vol.E107.B(1), pp.39-48 |
issn | 0916-8516 1745-1345 |
language | eng |
recordid | cdi_proquest_journals_2926362966 |
source | Alma/SFX Local Collection |
subjects | Back propagation Data recovery Demodulation digital coherent system digital signal processing Distortion Machine learning Mathematical models Polarization Waveforms |
title | Demodulation Framework Based on Machine Learning for Unrepeated Transmission Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Demodulation%20Framework%20Based%20on%20Machine%20Learning%20for%20Unrepeated%20Transmission%20Systems&rft.jtitle=IEICE%20Transactions%20on%20Communications&rft.au=SHIRAKI,%20Ryuta&rft.date=2024-01-01&rft.volume=E107.B&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.artnum=2023PNP0003&rft.issn=0916-8516&rft.eissn=1745-1345&rft_id=info:doi/10.1587/transcom.2023PNP0003&rft_dat=%3Cproquest_cross%3E2926362966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926362966&rft_id=info:pmid/&rfr_iscdi=true |