Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons

Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2024-02, Vol.18 (2), p.n/a
Hauptverfasser: Wan, Shuai, Wang, Pi‐Yu, Ma, Rui, Wang, Zheng‐Yu, Niu, Rui, He, De‐Yong, Guo, Guang‐Can, Bo, Fang, Liu, Junqiu, Dong, Chun‐Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Laser & photonics reviews
container_volume 18
creator Wan, Shuai
Wang, Pi‐Yu
Ma, Rui
Wang, Zheng‐Yu
Niu, Rui
He, De‐Yong
Guo, Guang‐Can
Bo, Fang
Liu, Junqiu
Dong, Chun‐Hua
description Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequency synthesizers, octave‐spanning soliton microcombs generated in dispersion‐optimized microresonators are required, which allow self‐referencing for full frequency stabilization. In addition, field‐deployable applications require the generation of such soliton microcombs to be simple, deterministic, and reproducible. Here, a novel scheme to generate self‐emerging solitons in integrated lithium‐niobate microresonators is demonstrated. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f–3f self‐referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single‐soliton formation is observed. The soliton is immune to external perturbation and can operate continuously for over 13 h without active feedback control. Finally, via integration with a pre‐programmed distributed feedback (DFB) laser, turnkey soliton generation is demonstrated. With further improvement of microresonator Q and hybrid integration with chip‐scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics, and optical telecommunications. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single soliton formation is observed. The system's ability to recover from perturbation, long‐term operation up to 13 h, and turnkey soliton generation with a pre‐programmed DFB laser are shown.
doi_str_mv 10.1002/lpor.202300627
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926343239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926343239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-6fb4a37f9b77b79bd398e15357d21f3b245311d9157aeea011e786c5db4d89363</originalsourceid><addsrcrecordid>eNqFUMlOwzAQtRBIlMKVcyTOKV6S2D5WpVBEpFYUzlaWMbhK42CnoN74BL6RL8FVUTkyl5nRW0bzELokeEQwptdNZ92IYsowzig_QgMiMhYLIeXxYRb4FJ15v8I4DZUN0GzxanvrQLui6o1tvz-_xt4b30MdLaHRYZ-uwb1AW0FkdXRjAtoVvXmH6AGci5a2Mb1t_Tk60UXj4eK3D9Hz7fRpMovz-d39ZJzHFUs5jzNdJgXjWpacl1yWNZMCSBqwmhLNSpqkjJBakpQXAAUmBLjIqrQuk1pIlrEhutr7ds6-bcD3amU3rg0nFZU0YwmjTAbWaM-qnPU-vKc6Z9aF2yqC1S4ttUtLHdIKArkXfJgGtv-wVb6YP_5pfwA28HB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926343239</pqid></control><display><type>article</type><title>Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wan, Shuai ; Wang, Pi‐Yu ; Ma, Rui ; Wang, Zheng‐Yu ; Niu, Rui ; He, De‐Yong ; Guo, Guang‐Can ; Bo, Fang ; Liu, Junqiu ; Dong, Chun‐Hua</creator><creatorcontrib>Wan, Shuai ; Wang, Pi‐Yu ; Ma, Rui ; Wang, Zheng‐Yu ; Niu, Rui ; He, De‐Yong ; Guo, Guang‐Can ; Bo, Fang ; Liu, Junqiu ; Dong, Chun‐Hua</creatorcontrib><description>Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequency synthesizers, octave‐spanning soliton microcombs generated in dispersion‐optimized microresonators are required, which allow self‐referencing for full frequency stabilization. In addition, field‐deployable applications require the generation of such soliton microcombs to be simple, deterministic, and reproducible. Here, a novel scheme to generate self‐emerging solitons in integrated lithium‐niobate microresonators is demonstrated. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f–3f self‐referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single‐soliton formation is observed. The soliton is immune to external perturbation and can operate continuously for over 13 h without active feedback control. Finally, via integration with a pre‐programmed distributed feedback (DFB) laser, turnkey soliton generation is demonstrated. With further improvement of microresonator Q and hybrid integration with chip‐scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics, and optical telecommunications. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single soliton formation is observed. The system's ability to recover from perturbation, long‐term operation up to 13 h, and turnkey soliton generation with a pre‐programmed DFB laser are shown.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202300627</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active control ; Actuation ; Atomic clocks ; Broadband ; Dissipation ; dissipative Kerr soliton ; Feedback control ; Frequency stabilization ; Frequency synthesizers ; lithium niobate ; Lithium niobates ; microresonators ; Microwave photonics ; Optical frequency ; Photorefraction ; Photorefractivity ; Solitary waves ; Synthesizers ; whispering gallery mode</subject><ispartof>Laser &amp; photonics reviews, 2024-02, Vol.18 (2), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-6fb4a37f9b77b79bd398e15357d21f3b245311d9157aeea011e786c5db4d89363</citedby><cites>FETCH-LOGICAL-c3577-6fb4a37f9b77b79bd398e15357d21f3b245311d9157aeea011e786c5db4d89363</cites><orcidid>0000-0002-9408-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202300627$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202300627$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wan, Shuai</creatorcontrib><creatorcontrib>Wang, Pi‐Yu</creatorcontrib><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Wang, Zheng‐Yu</creatorcontrib><creatorcontrib>Niu, Rui</creatorcontrib><creatorcontrib>He, De‐Yong</creatorcontrib><creatorcontrib>Guo, Guang‐Can</creatorcontrib><creatorcontrib>Bo, Fang</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><creatorcontrib>Dong, Chun‐Hua</creatorcontrib><title>Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons</title><title>Laser &amp; photonics reviews</title><description>Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequency synthesizers, octave‐spanning soliton microcombs generated in dispersion‐optimized microresonators are required, which allow self‐referencing for full frequency stabilization. In addition, field‐deployable applications require the generation of such soliton microcombs to be simple, deterministic, and reproducible. Here, a novel scheme to generate self‐emerging solitons in integrated lithium‐niobate microresonators is demonstrated. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f–3f self‐referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single‐soliton formation is observed. The soliton is immune to external perturbation and can operate continuously for over 13 h without active feedback control. Finally, via integration with a pre‐programmed distributed feedback (DFB) laser, turnkey soliton generation is demonstrated. With further improvement of microresonator Q and hybrid integration with chip‐scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics, and optical telecommunications. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single soliton formation is observed. The system's ability to recover from perturbation, long‐term operation up to 13 h, and turnkey soliton generation with a pre‐programmed DFB laser are shown.</description><subject>Active control</subject><subject>Actuation</subject><subject>Atomic clocks</subject><subject>Broadband</subject><subject>Dissipation</subject><subject>dissipative Kerr soliton</subject><subject>Feedback control</subject><subject>Frequency stabilization</subject><subject>Frequency synthesizers</subject><subject>lithium niobate</subject><subject>Lithium niobates</subject><subject>microresonators</subject><subject>Microwave photonics</subject><subject>Optical frequency</subject><subject>Photorefraction</subject><subject>Photorefractivity</subject><subject>Solitary waves</subject><subject>Synthesizers</subject><subject>whispering gallery mode</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMlOwzAQtRBIlMKVcyTOKV6S2D5WpVBEpFYUzlaWMbhK42CnoN74BL6RL8FVUTkyl5nRW0bzELokeEQwptdNZ92IYsowzig_QgMiMhYLIeXxYRb4FJ15v8I4DZUN0GzxanvrQLui6o1tvz-_xt4b30MdLaHRYZ-uwb1AW0FkdXRjAtoVvXmH6AGci5a2Mb1t_Tk60UXj4eK3D9Hz7fRpMovz-d39ZJzHFUs5jzNdJgXjWpacl1yWNZMCSBqwmhLNSpqkjJBakpQXAAUmBLjIqrQuk1pIlrEhutr7ds6-bcD3amU3rg0nFZU0YwmjTAbWaM-qnPU-vKc6Z9aF2yqC1S4ttUtLHdIKArkXfJgGtv-wVb6YP_5pfwA28HB4</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Wan, Shuai</creator><creator>Wang, Pi‐Yu</creator><creator>Ma, Rui</creator><creator>Wang, Zheng‐Yu</creator><creator>Niu, Rui</creator><creator>He, De‐Yong</creator><creator>Guo, Guang‐Can</creator><creator>Bo, Fang</creator><creator>Liu, Junqiu</creator><creator>Dong, Chun‐Hua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9408-6102</orcidid></search><sort><creationdate>202402</creationdate><title>Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons</title><author>Wan, Shuai ; Wang, Pi‐Yu ; Ma, Rui ; Wang, Zheng‐Yu ; Niu, Rui ; He, De‐Yong ; Guo, Guang‐Can ; Bo, Fang ; Liu, Junqiu ; Dong, Chun‐Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-6fb4a37f9b77b79bd398e15357d21f3b245311d9157aeea011e786c5db4d89363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>Actuation</topic><topic>Atomic clocks</topic><topic>Broadband</topic><topic>Dissipation</topic><topic>dissipative Kerr soliton</topic><topic>Feedback control</topic><topic>Frequency stabilization</topic><topic>Frequency synthesizers</topic><topic>lithium niobate</topic><topic>Lithium niobates</topic><topic>microresonators</topic><topic>Microwave photonics</topic><topic>Optical frequency</topic><topic>Photorefraction</topic><topic>Photorefractivity</topic><topic>Solitary waves</topic><topic>Synthesizers</topic><topic>whispering gallery mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Shuai</creatorcontrib><creatorcontrib>Wang, Pi‐Yu</creatorcontrib><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Wang, Zheng‐Yu</creatorcontrib><creatorcontrib>Niu, Rui</creatorcontrib><creatorcontrib>He, De‐Yong</creatorcontrib><creatorcontrib>Guo, Guang‐Can</creatorcontrib><creatorcontrib>Bo, Fang</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><creatorcontrib>Dong, Chun‐Hua</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Shuai</au><au>Wang, Pi‐Yu</au><au>Ma, Rui</au><au>Wang, Zheng‐Yu</au><au>Niu, Rui</au><au>He, De‐Yong</au><au>Guo, Guang‐Can</au><au>Bo, Fang</au><au>Liu, Junqiu</au><au>Dong, Chun‐Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2024-02</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequency synthesizers, octave‐spanning soliton microcombs generated in dispersion‐optimized microresonators are required, which allow self‐referencing for full frequency stabilization. In addition, field‐deployable applications require the generation of such soliton microcombs to be simple, deterministic, and reproducible. Here, a novel scheme to generate self‐emerging solitons in integrated lithium‐niobate microresonators is demonstrated. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f–3f self‐referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single‐soliton formation is observed. The soliton is immune to external perturbation and can operate continuously for over 13 h without active feedback control. Finally, via integration with a pre‐programmed distributed feedback (DFB) laser, turnkey soliton generation is demonstrated. With further improvement of microresonator Q and hybrid integration with chip‐scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics, and optical telecommunications. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single soliton formation is observed. The system's ability to recover from perturbation, long‐term operation up to 13 h, and turnkey soliton generation with a pre‐programmed DFB laser are shown.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202300627</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9408-6102</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2024-02, Vol.18 (2), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2926343239
source Wiley Online Library Journals Frontfile Complete
subjects Active control
Actuation
Atomic clocks
Broadband
Dissipation
dissipative Kerr soliton
Feedback control
Frequency stabilization
Frequency synthesizers
lithium niobate
Lithium niobates
microresonators
Microwave photonics
Optical frequency
Photorefraction
Photorefractivity
Solitary waves
Synthesizers
whispering gallery mode
title Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photorefraction%E2%80%90Assisted%20Self%E2%80%90Emergence%20of%20Dissipative%20Kerr%20Solitons&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Wan,%20Shuai&rft.date=2024-02&rft.volume=18&rft.issue=2&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202300627&rft_dat=%3Cproquest_cross%3E2926343239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926343239&rft_id=info:pmid/&rfr_iscdi=true