Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons
Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequenc...
Gespeichert in:
Veröffentlicht in: | Laser & photonics reviews 2024-02, Vol.18 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Laser & photonics reviews |
container_volume | 18 |
creator | Wan, Shuai Wang, Pi‐Yu Ma, Rui Wang, Zheng‐Yu Niu, Rui He, De‐Yong Guo, Guang‐Can Bo, Fang Liu, Junqiu Dong, Chun‐Hua |
description | Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequency synthesizers, octave‐spanning soliton microcombs generated in dispersion‐optimized microresonators are required, which allow self‐referencing for full frequency stabilization. In addition, field‐deployable applications require the generation of such soliton microcombs to be simple, deterministic, and reproducible. Here, a novel scheme to generate self‐emerging solitons in integrated lithium‐niobate microresonators is demonstrated. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f–3f self‐referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single‐soliton formation is observed. The soliton is immune to external perturbation and can operate continuously for over 13 h without active feedback control. Finally, via integration with a pre‐programmed distributed feedback (DFB) laser, turnkey soliton generation is demonstrated. With further improvement of microresonator Q and hybrid integration with chip‐scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics, and optical telecommunications.
Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single soliton formation is observed. The system's ability to recover from perturbation, long‐term operation up to 13 h, and turnkey soliton generation with a pre‐programmed DFB laser are shown. |
doi_str_mv | 10.1002/lpor.202300627 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926343239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926343239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3577-6fb4a37f9b77b79bd398e15357d21f3b245311d9157aeea011e786c5db4d89363</originalsourceid><addsrcrecordid>eNqFUMlOwzAQtRBIlMKVcyTOKV6S2D5WpVBEpFYUzlaWMbhK42CnoN74BL6RL8FVUTkyl5nRW0bzELokeEQwptdNZ92IYsowzig_QgMiMhYLIeXxYRb4FJ15v8I4DZUN0GzxanvrQLui6o1tvz-_xt4b30MdLaHRYZ-uwb1AW0FkdXRjAtoVvXmH6AGci5a2Mb1t_Tk60UXj4eK3D9Hz7fRpMovz-d39ZJzHFUs5jzNdJgXjWpacl1yWNZMCSBqwmhLNSpqkjJBakpQXAAUmBLjIqrQuk1pIlrEhutr7ds6-bcD3amU3rg0nFZU0YwmjTAbWaM-qnPU-vKc6Z9aF2yqC1S4ttUtLHdIKArkXfJgGtv-wVb6YP_5pfwA28HB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926343239</pqid></control><display><type>article</type><title>Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wan, Shuai ; Wang, Pi‐Yu ; Ma, Rui ; Wang, Zheng‐Yu ; Niu, Rui ; He, De‐Yong ; Guo, Guang‐Can ; Bo, Fang ; Liu, Junqiu ; Dong, Chun‐Hua</creator><creatorcontrib>Wan, Shuai ; Wang, Pi‐Yu ; Ma, Rui ; Wang, Zheng‐Yu ; Niu, Rui ; He, De‐Yong ; Guo, Guang‐Can ; Bo, Fang ; Liu, Junqiu ; Dong, Chun‐Hua</creatorcontrib><description>Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequency synthesizers, octave‐spanning soliton microcombs generated in dispersion‐optimized microresonators are required, which allow self‐referencing for full frequency stabilization. In addition, field‐deployable applications require the generation of such soliton microcombs to be simple, deterministic, and reproducible. Here, a novel scheme to generate self‐emerging solitons in integrated lithium‐niobate microresonators is demonstrated. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f–3f self‐referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single‐soliton formation is observed. The soliton is immune to external perturbation and can operate continuously for over 13 h without active feedback control. Finally, via integration with a pre‐programmed distributed feedback (DFB) laser, turnkey soliton generation is demonstrated. With further improvement of microresonator Q and hybrid integration with chip‐scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics, and optical telecommunications.
Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single soliton formation is observed. The system's ability to recover from perturbation, long‐term operation up to 13 h, and turnkey soliton generation with a pre‐programmed DFB laser are shown.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202300627</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Active control ; Actuation ; Atomic clocks ; Broadband ; Dissipation ; dissipative Kerr soliton ; Feedback control ; Frequency stabilization ; Frequency synthesizers ; lithium niobate ; Lithium niobates ; microresonators ; Microwave photonics ; Optical frequency ; Photorefraction ; Photorefractivity ; Solitary waves ; Synthesizers ; whispering gallery mode</subject><ispartof>Laser & photonics reviews, 2024-02, Vol.18 (2), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3577-6fb4a37f9b77b79bd398e15357d21f3b245311d9157aeea011e786c5db4d89363</citedby><cites>FETCH-LOGICAL-c3577-6fb4a37f9b77b79bd398e15357d21f3b245311d9157aeea011e786c5db4d89363</cites><orcidid>0000-0002-9408-6102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202300627$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202300627$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wan, Shuai</creatorcontrib><creatorcontrib>Wang, Pi‐Yu</creatorcontrib><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Wang, Zheng‐Yu</creatorcontrib><creatorcontrib>Niu, Rui</creatorcontrib><creatorcontrib>He, De‐Yong</creatorcontrib><creatorcontrib>Guo, Guang‐Can</creatorcontrib><creatorcontrib>Bo, Fang</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><creatorcontrib>Dong, Chun‐Hua</creatorcontrib><title>Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons</title><title>Laser & photonics reviews</title><description>Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequency synthesizers, octave‐spanning soliton microcombs generated in dispersion‐optimized microresonators are required, which allow self‐referencing for full frequency stabilization. In addition, field‐deployable applications require the generation of such soliton microcombs to be simple, deterministic, and reproducible. Here, a novel scheme to generate self‐emerging solitons in integrated lithium‐niobate microresonators is demonstrated. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f–3f self‐referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single‐soliton formation is observed. The soliton is immune to external perturbation and can operate continuously for over 13 h without active feedback control. Finally, via integration with a pre‐programmed distributed feedback (DFB) laser, turnkey soliton generation is demonstrated. With further improvement of microresonator Q and hybrid integration with chip‐scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics, and optical telecommunications.
Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single soliton formation is observed. The system's ability to recover from perturbation, long‐term operation up to 13 h, and turnkey soliton generation with a pre‐programmed DFB laser are shown.</description><subject>Active control</subject><subject>Actuation</subject><subject>Atomic clocks</subject><subject>Broadband</subject><subject>Dissipation</subject><subject>dissipative Kerr soliton</subject><subject>Feedback control</subject><subject>Frequency stabilization</subject><subject>Frequency synthesizers</subject><subject>lithium niobate</subject><subject>Lithium niobates</subject><subject>microresonators</subject><subject>Microwave photonics</subject><subject>Optical frequency</subject><subject>Photorefraction</subject><subject>Photorefractivity</subject><subject>Solitary waves</subject><subject>Synthesizers</subject><subject>whispering gallery mode</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMlOwzAQtRBIlMKVcyTOKV6S2D5WpVBEpFYUzlaWMbhK42CnoN74BL6RL8FVUTkyl5nRW0bzELokeEQwptdNZ92IYsowzig_QgMiMhYLIeXxYRb4FJ15v8I4DZUN0GzxanvrQLui6o1tvz-_xt4b30MdLaHRYZ-uwb1AW0FkdXRjAtoVvXmH6AGci5a2Mb1t_Tk60UXj4eK3D9Hz7fRpMovz-d39ZJzHFUs5jzNdJgXjWpacl1yWNZMCSBqwmhLNSpqkjJBakpQXAAUmBLjIqrQuk1pIlrEhutr7ds6-bcD3amU3rg0nFZU0YwmjTAbWaM-qnPU-vKc6Z9aF2yqC1S4ttUtLHdIKArkXfJgGtv-wVb6YP_5pfwA28HB4</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Wan, Shuai</creator><creator>Wang, Pi‐Yu</creator><creator>Ma, Rui</creator><creator>Wang, Zheng‐Yu</creator><creator>Niu, Rui</creator><creator>He, De‐Yong</creator><creator>Guo, Guang‐Can</creator><creator>Bo, Fang</creator><creator>Liu, Junqiu</creator><creator>Dong, Chun‐Hua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9408-6102</orcidid></search><sort><creationdate>202402</creationdate><title>Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons</title><author>Wan, Shuai ; Wang, Pi‐Yu ; Ma, Rui ; Wang, Zheng‐Yu ; Niu, Rui ; He, De‐Yong ; Guo, Guang‐Can ; Bo, Fang ; Liu, Junqiu ; Dong, Chun‐Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3577-6fb4a37f9b77b79bd398e15357d21f3b245311d9157aeea011e786c5db4d89363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Active control</topic><topic>Actuation</topic><topic>Atomic clocks</topic><topic>Broadband</topic><topic>Dissipation</topic><topic>dissipative Kerr soliton</topic><topic>Feedback control</topic><topic>Frequency stabilization</topic><topic>Frequency synthesizers</topic><topic>lithium niobate</topic><topic>Lithium niobates</topic><topic>microresonators</topic><topic>Microwave photonics</topic><topic>Optical frequency</topic><topic>Photorefraction</topic><topic>Photorefractivity</topic><topic>Solitary waves</topic><topic>Synthesizers</topic><topic>whispering gallery mode</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Shuai</creatorcontrib><creatorcontrib>Wang, Pi‐Yu</creatorcontrib><creatorcontrib>Ma, Rui</creatorcontrib><creatorcontrib>Wang, Zheng‐Yu</creatorcontrib><creatorcontrib>Niu, Rui</creatorcontrib><creatorcontrib>He, De‐Yong</creatorcontrib><creatorcontrib>Guo, Guang‐Can</creatorcontrib><creatorcontrib>Bo, Fang</creatorcontrib><creatorcontrib>Liu, Junqiu</creatorcontrib><creatorcontrib>Dong, Chun‐Hua</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser & photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Shuai</au><au>Wang, Pi‐Yu</au><au>Ma, Rui</au><au>Wang, Zheng‐Yu</au><au>Niu, Rui</au><au>He, De‐Yong</au><au>Guo, Guang‐Can</au><au>Bo, Fang</au><au>Liu, Junqiu</au><au>Dong, Chun‐Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons</atitle><jtitle>Laser & photonics reviews</jtitle><date>2024-02</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>Generated in high‐Q optical microresonators, dissipative Kerr soliton microcombs constitute broadband optical frequency combs with chip sizes and repetition rates in the microwave to millimeter‐wave range. For frequency metrology applications such as spectroscopy, optical atomic clocks, and frequency synthesizers, octave‐spanning soliton microcombs generated in dispersion‐optimized microresonators are required, which allow self‐referencing for full frequency stabilization. In addition, field‐deployable applications require the generation of such soliton microcombs to be simple, deterministic, and reproducible. Here, a novel scheme to generate self‐emerging solitons in integrated lithium‐niobate microresonators is demonstrated. The single soliton features a broadband spectral bandwidth with dual dispersive waves, allowing 2f–3f self‐referencing. Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single‐soliton formation is observed. The soliton is immune to external perturbation and can operate continuously for over 13 h without active feedback control. Finally, via integration with a pre‐programmed distributed feedback (DFB) laser, turnkey soliton generation is demonstrated. With further improvement of microresonator Q and hybrid integration with chip‐scale laser chips, compact soliton microcomb devices with electronic actuation can be created, which can become central elements for future LiDAR, microwave photonics, and optical telecommunications.
Via harnessing the photorefractive effect of lithium niobate to significantly extend the soliton existence range, a spontaneous yet deterministic single soliton formation is observed. The system's ability to recover from perturbation, long‐term operation up to 13 h, and turnkey soliton generation with a pre‐programmed DFB laser are shown.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202300627</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9408-6102</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-8880 |
ispartof | Laser & photonics reviews, 2024-02, Vol.18 (2), p.n/a |
issn | 1863-8880 1863-8899 |
language | eng |
recordid | cdi_proquest_journals_2926343239 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Active control Actuation Atomic clocks Broadband Dissipation dissipative Kerr soliton Feedback control Frequency stabilization Frequency synthesizers lithium niobate Lithium niobates microresonators Microwave photonics Optical frequency Photorefraction Photorefractivity Solitary waves Synthesizers whispering gallery mode |
title | Photorefraction‐Assisted Self‐Emergence of Dissipative Kerr Solitons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photorefraction%E2%80%90Assisted%20Self%E2%80%90Emergence%20of%20Dissipative%20Kerr%20Solitons&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Wan,%20Shuai&rft.date=2024-02&rft.volume=18&rft.issue=2&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202300627&rft_dat=%3Cproquest_cross%3E2926343239%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926343239&rft_id=info:pmid/&rfr_iscdi=true |