Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset
Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classifica...
Gespeichert in:
Veröffentlicht in: | Annalen der Physik 2024-02, Vol.536 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Annalen der Physik |
container_volume | 536 |
creator | Sakai, Yusuke Itoh, Yousuke Jung, Piljong Kokeyama, Keiko Kozakai, Chihiro Nakahira, Katsuko T. Oshino, Shoichi Shikano, Yutaka Takahashi, Hirotaka Uchiyama, Takashi Ueshima, Gen Washimi, Tatsuki Yamamoto, Takahiro Yokozawa, Takaaki |
description | Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time–frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised‐learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational‐Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised‐learning architecture of the previous study is examined and reported.
Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. An architecture for classifying transient noise, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering, is proposed. In this study, the training process of the architecture is examined and reported. |
doi_str_mv | 10.1002/andp.202200140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926343145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926343145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4370-7a5a816cff6ba648a7d06e037ab8d70e2344813259d48f63edc839627197b5c33</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOOaungOeO19-NEmPY9NNGHPgdg5ZmmrGbGvSTvrf2znRo6f3ffD5vgcfhG4JjAkAvTdlXo8pUApAOFygAUkpSZhS2SUaAADrM_BrNIpx36-QQg_zAVptgvGlL1_xOlTWxYirAm_L2NYuHH10OV46E76BSbBvvnG2aYPDRRXwPJijbzr8Und4ZhoTXXODrgpziG70M4do-_iwmS6S5fP8aTpZJpYzCYk0qVFE2KIQOyO4MjIH4YBJs1O5BEcZ54owmmY5V4VgLreKZYJKksldahkborvz3TpUH62Ljd5XbSj7l5pmVDDOCE97anymbKhiDK7QdfDvJnSagD5p0ydt-ldbX8jOhU9_cN0_tJ6sZuu_7hcBbXAV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926343145</pqid></control><display><type>article</type><title>Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sakai, Yusuke ; Itoh, Yousuke ; Jung, Piljong ; Kokeyama, Keiko ; Kozakai, Chihiro ; Nakahira, Katsuko T. ; Oshino, Shoichi ; Shikano, Yutaka ; Takahashi, Hirotaka ; Uchiyama, Takashi ; Ueshima, Gen ; Washimi, Tatsuki ; Yamamoto, Takahiro ; Yokozawa, Takaaki</creator><creatorcontrib>Sakai, Yusuke ; Itoh, Yousuke ; Jung, Piljong ; Kokeyama, Keiko ; Kozakai, Chihiro ; Nakahira, Katsuko T. ; Oshino, Shoichi ; Shikano, Yutaka ; Takahashi, Hirotaka ; Uchiyama, Takashi ; Ueshima, Gen ; Washimi, Tatsuki ; Yamamoto, Takahiro ; Yokozawa, Takaaki</creatorcontrib><description>Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time–frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised‐learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational‐Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised‐learning architecture of the previous study is examined and reported.
Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. An architecture for classifying transient noise, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering, is proposed. In this study, the training process of the architecture is examined and reported.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.202200140</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Classification ; Clustering ; Data analysis ; Datasets ; Deep learning ; Detectors ; hyperparameter tuning ; Machine learning ; training processes ; transient noise ; Unsupervised learning</subject><ispartof>Annalen der Physik, 2024-02, Vol.536 (2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4370-7a5a816cff6ba648a7d06e037ab8d70e2344813259d48f63edc839627197b5c33</citedby><cites>FETCH-LOGICAL-c4370-7a5a816cff6ba648a7d06e037ab8d70e2344813259d48f63edc839627197b5c33</cites><orcidid>0000-0003-0596-4397 ; 0000-0001-8810-4813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.202200140$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.202200140$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Sakai, Yusuke</creatorcontrib><creatorcontrib>Itoh, Yousuke</creatorcontrib><creatorcontrib>Jung, Piljong</creatorcontrib><creatorcontrib>Kokeyama, Keiko</creatorcontrib><creatorcontrib>Kozakai, Chihiro</creatorcontrib><creatorcontrib>Nakahira, Katsuko T.</creatorcontrib><creatorcontrib>Oshino, Shoichi</creatorcontrib><creatorcontrib>Shikano, Yutaka</creatorcontrib><creatorcontrib>Takahashi, Hirotaka</creatorcontrib><creatorcontrib>Uchiyama, Takashi</creatorcontrib><creatorcontrib>Ueshima, Gen</creatorcontrib><creatorcontrib>Washimi, Tatsuki</creatorcontrib><creatorcontrib>Yamamoto, Takahiro</creatorcontrib><creatorcontrib>Yokozawa, Takaaki</creatorcontrib><title>Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset</title><title>Annalen der Physik</title><description>Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time–frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised‐learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational‐Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised‐learning architecture of the previous study is examined and reported.
Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. An architecture for classifying transient noise, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering, is proposed. In this study, the training process of the architecture is examined and reported.</description><subject>Classification</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>hyperparameter tuning</subject><subject>Machine learning</subject><subject>training processes</subject><subject>transient noise</subject><subject>Unsupervised learning</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4MoOOaungOeO19-NEmPY9NNGHPgdg5ZmmrGbGvSTvrf2znRo6f3ffD5vgcfhG4JjAkAvTdlXo8pUApAOFygAUkpSZhS2SUaAADrM_BrNIpx36-QQg_zAVptgvGlL1_xOlTWxYirAm_L2NYuHH10OV46E76BSbBvvnG2aYPDRRXwPJijbzr8Und4ZhoTXXODrgpziG70M4do-_iwmS6S5fP8aTpZJpYzCYk0qVFE2KIQOyO4MjIH4YBJs1O5BEcZ54owmmY5V4VgLreKZYJKksldahkborvz3TpUH62Ljd5XbSj7l5pmVDDOCE97anymbKhiDK7QdfDvJnSagD5p0ydt-ldbX8jOhU9_cN0_tJ6sZuu_7hcBbXAV</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Sakai, Yusuke</creator><creator>Itoh, Yousuke</creator><creator>Jung, Piljong</creator><creator>Kokeyama, Keiko</creator><creator>Kozakai, Chihiro</creator><creator>Nakahira, Katsuko T.</creator><creator>Oshino, Shoichi</creator><creator>Shikano, Yutaka</creator><creator>Takahashi, Hirotaka</creator><creator>Uchiyama, Takashi</creator><creator>Ueshima, Gen</creator><creator>Washimi, Tatsuki</creator><creator>Yamamoto, Takahiro</creator><creator>Yokozawa, Takaaki</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0596-4397</orcidid><orcidid>https://orcid.org/0000-0001-8810-4813</orcidid></search><sort><creationdate>202402</creationdate><title>Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset</title><author>Sakai, Yusuke ; Itoh, Yousuke ; Jung, Piljong ; Kokeyama, Keiko ; Kozakai, Chihiro ; Nakahira, Katsuko T. ; Oshino, Shoichi ; Shikano, Yutaka ; Takahashi, Hirotaka ; Uchiyama, Takashi ; Ueshima, Gen ; Washimi, Tatsuki ; Yamamoto, Takahiro ; Yokozawa, Takaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4370-7a5a816cff6ba648a7d06e037ab8d70e2344813259d48f63edc839627197b5c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>hyperparameter tuning</topic><topic>Machine learning</topic><topic>training processes</topic><topic>transient noise</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakai, Yusuke</creatorcontrib><creatorcontrib>Itoh, Yousuke</creatorcontrib><creatorcontrib>Jung, Piljong</creatorcontrib><creatorcontrib>Kokeyama, Keiko</creatorcontrib><creatorcontrib>Kozakai, Chihiro</creatorcontrib><creatorcontrib>Nakahira, Katsuko T.</creatorcontrib><creatorcontrib>Oshino, Shoichi</creatorcontrib><creatorcontrib>Shikano, Yutaka</creatorcontrib><creatorcontrib>Takahashi, Hirotaka</creatorcontrib><creatorcontrib>Uchiyama, Takashi</creatorcontrib><creatorcontrib>Ueshima, Gen</creatorcontrib><creatorcontrib>Washimi, Tatsuki</creatorcontrib><creatorcontrib>Yamamoto, Takahiro</creatorcontrib><creatorcontrib>Yokozawa, Takaaki</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakai, Yusuke</au><au>Itoh, Yousuke</au><au>Jung, Piljong</au><au>Kokeyama, Keiko</au><au>Kozakai, Chihiro</au><au>Nakahira, Katsuko T.</au><au>Oshino, Shoichi</au><au>Shikano, Yutaka</au><au>Takahashi, Hirotaka</au><au>Uchiyama, Takashi</au><au>Ueshima, Gen</au><au>Washimi, Tatsuki</au><au>Yamamoto, Takahiro</au><au>Yokozawa, Takaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset</atitle><jtitle>Annalen der Physik</jtitle><date>2024-02</date><risdate>2024</risdate><volume>536</volume><issue>2</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time–frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised‐learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational‐Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised‐learning architecture of the previous study is examined and reported.
Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. An architecture for classifying transient noise, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering, is proposed. In this study, the training process of the architecture is examined and reported.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.202200140</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0596-4397</orcidid><orcidid>https://orcid.org/0000-0001-8810-4813</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-3804 |
ispartof | Annalen der Physik, 2024-02, Vol.536 (2), p.n/a |
issn | 0003-3804 1521-3889 |
language | eng |
recordid | cdi_proquest_journals_2926343145 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Classification Clustering Data analysis Datasets Deep learning Detectors hyperparameter tuning Machine learning training processes transient noise Unsupervised learning |
title | Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training%20Process%20of%20Unsupervised%20Learning%20Architecture%20for%20Gravity%20Spy%20Dataset&rft.jtitle=Annalen%20der%20Physik&rft.au=Sakai,%20Yusuke&rft.date=2024-02&rft.volume=536&rft.issue=2&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.202200140&rft_dat=%3Cproquest_cross%3E2926343145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926343145&rft_id=info:pmid/&rfr_iscdi=true |