Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset

Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annalen der Physik 2024-02, Vol.536 (2), p.n/a
Hauptverfasser: Sakai, Yusuke, Itoh, Yousuke, Jung, Piljong, Kokeyama, Keiko, Kozakai, Chihiro, Nakahira, Katsuko T., Oshino, Shoichi, Shikano, Yutaka, Takahashi, Hirotaka, Uchiyama, Takashi, Ueshima, Gen, Washimi, Tatsuki, Yamamoto, Takahiro, Yokozawa, Takaaki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Annalen der Physik
container_volume 536
creator Sakai, Yusuke
Itoh, Yousuke
Jung, Piljong
Kokeyama, Keiko
Kozakai, Chihiro
Nakahira, Katsuko T.
Oshino, Shoichi
Shikano, Yutaka
Takahashi, Hirotaka
Uchiyama, Takashi
Ueshima, Gen
Washimi, Tatsuki
Yamamoto, Takahiro
Yokozawa, Takaaki
description Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time–frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised‐learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational‐Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised‐learning architecture of the previous study is examined and reported. Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. An architecture for classifying transient noise, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering, is proposed. In this study, the training process of the architecture is examined and reported.
doi_str_mv 10.1002/andp.202200140
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2926343145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2926343145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4370-7a5a816cff6ba648a7d06e037ab8d70e2344813259d48f63edc839627197b5c33</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOOaungOeO19-NEmPY9NNGHPgdg5ZmmrGbGvSTvrf2znRo6f3ffD5vgcfhG4JjAkAvTdlXo8pUApAOFygAUkpSZhS2SUaAADrM_BrNIpx36-QQg_zAVptgvGlL1_xOlTWxYirAm_L2NYuHH10OV46E76BSbBvvnG2aYPDRRXwPJijbzr8Und4ZhoTXXODrgpziG70M4do-_iwmS6S5fP8aTpZJpYzCYk0qVFE2KIQOyO4MjIH4YBJs1O5BEcZ54owmmY5V4VgLreKZYJKksldahkborvz3TpUH62Ljd5XbSj7l5pmVDDOCE97anymbKhiDK7QdfDvJnSagD5p0ydt-ldbX8jOhU9_cN0_tJ6sZuu_7hcBbXAV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2926343145</pqid></control><display><type>article</type><title>Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sakai, Yusuke ; Itoh, Yousuke ; Jung, Piljong ; Kokeyama, Keiko ; Kozakai, Chihiro ; Nakahira, Katsuko T. ; Oshino, Shoichi ; Shikano, Yutaka ; Takahashi, Hirotaka ; Uchiyama, Takashi ; Ueshima, Gen ; Washimi, Tatsuki ; Yamamoto, Takahiro ; Yokozawa, Takaaki</creator><creatorcontrib>Sakai, Yusuke ; Itoh, Yousuke ; Jung, Piljong ; Kokeyama, Keiko ; Kozakai, Chihiro ; Nakahira, Katsuko T. ; Oshino, Shoichi ; Shikano, Yutaka ; Takahashi, Hirotaka ; Uchiyama, Takashi ; Ueshima, Gen ; Washimi, Tatsuki ; Yamamoto, Takahiro ; Yokozawa, Takaaki</creatorcontrib><description>Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time–frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised‐learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational‐Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised‐learning architecture of the previous study is examined and reported. Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. An architecture for classifying transient noise, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering, is proposed. In this study, the training process of the architecture is examined and reported.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.202200140</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Classification ; Clustering ; Data analysis ; Datasets ; Deep learning ; Detectors ; hyperparameter tuning ; Machine learning ; training processes ; transient noise ; Unsupervised learning</subject><ispartof>Annalen der Physik, 2024-02, Vol.536 (2), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4370-7a5a816cff6ba648a7d06e037ab8d70e2344813259d48f63edc839627197b5c33</citedby><cites>FETCH-LOGICAL-c4370-7a5a816cff6ba648a7d06e037ab8d70e2344813259d48f63edc839627197b5c33</cites><orcidid>0000-0003-0596-4397 ; 0000-0001-8810-4813</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.202200140$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.202200140$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Sakai, Yusuke</creatorcontrib><creatorcontrib>Itoh, Yousuke</creatorcontrib><creatorcontrib>Jung, Piljong</creatorcontrib><creatorcontrib>Kokeyama, Keiko</creatorcontrib><creatorcontrib>Kozakai, Chihiro</creatorcontrib><creatorcontrib>Nakahira, Katsuko T.</creatorcontrib><creatorcontrib>Oshino, Shoichi</creatorcontrib><creatorcontrib>Shikano, Yutaka</creatorcontrib><creatorcontrib>Takahashi, Hirotaka</creatorcontrib><creatorcontrib>Uchiyama, Takashi</creatorcontrib><creatorcontrib>Ueshima, Gen</creatorcontrib><creatorcontrib>Washimi, Tatsuki</creatorcontrib><creatorcontrib>Yamamoto, Takahiro</creatorcontrib><creatorcontrib>Yokozawa, Takaaki</creatorcontrib><title>Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset</title><title>Annalen der Physik</title><description>Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time–frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised‐learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational‐Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised‐learning architecture of the previous study is examined and reported. Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. An architecture for classifying transient noise, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering, is proposed. In this study, the training process of the architecture is examined and reported.</description><subject>Classification</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>hyperparameter tuning</subject><subject>Machine learning</subject><subject>training processes</subject><subject>transient noise</subject><subject>Unsupervised learning</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4MoOOaungOeO19-NEmPY9NNGHPgdg5ZmmrGbGvSTvrf2znRo6f3ffD5vgcfhG4JjAkAvTdlXo8pUApAOFygAUkpSZhS2SUaAADrM_BrNIpx36-QQg_zAVptgvGlL1_xOlTWxYirAm_L2NYuHH10OV46E76BSbBvvnG2aYPDRRXwPJijbzr8Und4ZhoTXXODrgpziG70M4do-_iwmS6S5fP8aTpZJpYzCYk0qVFE2KIQOyO4MjIH4YBJs1O5BEcZ54owmmY5V4VgLreKZYJKksldahkborvz3TpUH62Ljd5XbSj7l5pmVDDOCE97anymbKhiDK7QdfDvJnSagD5p0ydt-ldbX8jOhU9_cN0_tJ6sZuu_7hcBbXAV</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Sakai, Yusuke</creator><creator>Itoh, Yousuke</creator><creator>Jung, Piljong</creator><creator>Kokeyama, Keiko</creator><creator>Kozakai, Chihiro</creator><creator>Nakahira, Katsuko T.</creator><creator>Oshino, Shoichi</creator><creator>Shikano, Yutaka</creator><creator>Takahashi, Hirotaka</creator><creator>Uchiyama, Takashi</creator><creator>Ueshima, Gen</creator><creator>Washimi, Tatsuki</creator><creator>Yamamoto, Takahiro</creator><creator>Yokozawa, Takaaki</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0596-4397</orcidid><orcidid>https://orcid.org/0000-0001-8810-4813</orcidid></search><sort><creationdate>202402</creationdate><title>Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset</title><author>Sakai, Yusuke ; Itoh, Yousuke ; Jung, Piljong ; Kokeyama, Keiko ; Kozakai, Chihiro ; Nakahira, Katsuko T. ; Oshino, Shoichi ; Shikano, Yutaka ; Takahashi, Hirotaka ; Uchiyama, Takashi ; Ueshima, Gen ; Washimi, Tatsuki ; Yamamoto, Takahiro ; Yokozawa, Takaaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4370-7a5a816cff6ba648a7d06e037ab8d70e2344813259d48f63edc839627197b5c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>hyperparameter tuning</topic><topic>Machine learning</topic><topic>training processes</topic><topic>transient noise</topic><topic>Unsupervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakai, Yusuke</creatorcontrib><creatorcontrib>Itoh, Yousuke</creatorcontrib><creatorcontrib>Jung, Piljong</creatorcontrib><creatorcontrib>Kokeyama, Keiko</creatorcontrib><creatorcontrib>Kozakai, Chihiro</creatorcontrib><creatorcontrib>Nakahira, Katsuko T.</creatorcontrib><creatorcontrib>Oshino, Shoichi</creatorcontrib><creatorcontrib>Shikano, Yutaka</creatorcontrib><creatorcontrib>Takahashi, Hirotaka</creatorcontrib><creatorcontrib>Uchiyama, Takashi</creatorcontrib><creatorcontrib>Ueshima, Gen</creatorcontrib><creatorcontrib>Washimi, Tatsuki</creatorcontrib><creatorcontrib>Yamamoto, Takahiro</creatorcontrib><creatorcontrib>Yokozawa, Takaaki</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakai, Yusuke</au><au>Itoh, Yousuke</au><au>Jung, Piljong</au><au>Kokeyama, Keiko</au><au>Kozakai, Chihiro</au><au>Nakahira, Katsuko T.</au><au>Oshino, Shoichi</au><au>Shikano, Yutaka</au><au>Takahashi, Hirotaka</au><au>Uchiyama, Takashi</au><au>Ueshima, Gen</au><au>Washimi, Tatsuki</au><au>Yamamoto, Takahiro</au><au>Yokozawa, Takaaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset</atitle><jtitle>Annalen der Physik</jtitle><date>2024-02</date><risdate>2024</risdate><volume>536</volume><issue>2</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems, such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. Because transient noise is considered to be associated with the environment and instrument, its classification would help to understand its origin and improve the detector's performance. In a previous study, an architecture for classifying transient noise using a time–frequency 2D image (spectrogram) is proposed, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The proposed unsupervised‐learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer Gravitational‐Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised‐learning architecture of the previous study is examined and reported. Transient noise appearing in the data from gravitational‐wave detectors frequently causes problems such as instability of the detectors and overlapping or mimicking gravitational‐wave signals. An architecture for classifying transient noise, which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering, is proposed. In this study, the training process of the architecture is examined and reported.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.202200140</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0596-4397</orcidid><orcidid>https://orcid.org/0000-0001-8810-4813</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2024-02, Vol.536 (2), p.n/a
issn 0003-3804
1521-3889
language eng
recordid cdi_proquest_journals_2926343145
source Wiley Online Library Journals Frontfile Complete
subjects Classification
Clustering
Data analysis
Datasets
Deep learning
Detectors
hyperparameter tuning
Machine learning
training processes
transient noise
Unsupervised learning
title Training Process of Unsupervised Learning Architecture for Gravity Spy Dataset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Training%20Process%20of%20Unsupervised%20Learning%20Architecture%20for%20Gravity%20Spy%20Dataset&rft.jtitle=Annalen%20der%20Physik&rft.au=Sakai,%20Yusuke&rft.date=2024-02&rft.volume=536&rft.issue=2&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.202200140&rft_dat=%3Cproquest_cross%3E2926343145%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2926343145&rft_id=info:pmid/&rfr_iscdi=true